EL ÁNTRAX UN PROBLEMA DE AYER Y DE HOY

Isabel Pérez González e Isabel Serrano Fernández 1º Biología Sanitaria UAH

1.- En líneas generales:

La enfermedad del ántrax es una enfermedad infecciosa ocasionada por la bacteria Bacillus anthracis. Se denomina de múltiples formas: Carbunco bacteridiano o maligno, enfermedad de los laneros o traperos, úlcera de Siberia, etc.

La enfermedad posee como características principales una alta virulencia, elevada mortalidad y gran resistencia en el medio, debido a que es formador de esporas. Afecta a bastantes especies, siendo la de más relevancia, por gravedad e incidencia, los herbívoros, aunque afecta también a humanos.

En Europa, sólo se dan casos de ántrax en países en los que la enfermedad es endémica (Turquía, Albania, España, etc).

2.- Un poco de historia:

La enfermedad del ántrax fue descrita por primera vez por los griegos quienes la designaron como “antrhakis” que significa carbón, debido al parecido de dicha roca con las lesiones de color negro que se producen en la piel de quienes padecen la enfermedad en su forma cutánea. Por este mismo motivo los romanos la llamaron carbunco, que también significa carbón.

Los primeros estudios sobre la enfermedad del ántrax se remontan al siglo XVII. En 1681, el médico militar italiano G. B. Ramazzini (1633-1714) describió una enfermedad que afectaba a la piel y que presentaba lesiones negras. Posteriormente, en 1771, el doctor José Antonio Pavia (1735-1793) describió el síndrome característico de la fiebre del ántrax y el doctor Johann Heinrich Müller (1734-1815) describió las lesiones cutáneas que acompañaban a esta enfermedad.

No fue hasta el siglo XIX cuando, gracias a los experimentos de científicos como Pierre Rayer (1850), Casimir-Joseph Davaine (1862) y Tiegel y Klebs (1864),  se demostró que la causa de la enfermedad del ántrax era una bacteria y que, por tanto, se trataba de una enfermedad infecciosa.

El Bacillus anthracis, bacteria causante de la enfermedad, fue objeto de investigación por parte de Robert Koch (1876) en el campo de la bacteriología, desmintiendo la teoría de la generación espontánea e introduciendo conceptos como gérmenes y agente microbianos. Koch fue también quien observó por primera vez el ciclo de vida de la bacteria y quien demostró que podía formar esporas altamente resistentes dentro de sí misma, especialmente en condiciones anaeróbicas. Cuando las condiciones eran favorables dichas esporas se volvían bacilos tratándose, por tanto, de un mecanismo de autoprotección. 

Fue el botánico francés Louis Pasteur (1822-1895) quien en el año 1881, encontró la forma de destruir la bacteria del ántrax y fue el encargado de desarrollar la primera vacuna contra la enfermedad tras aislar una cepa atenuada.

3.- Forma y mecanismo de acción:

La enfermedad del ántrax es causada por la bacteria Bacillus anthracis que es una bacteria Gram positiva, aerobia, encapsulada, no móvil, formadora de endoesporas que le permiten sobrevivir en condiciones de falta de oxígeno (anaerobia facultativa), pero la formación de dichas esporas necesita de oxígeno. La forma infectiva son sus esporas, que es la forma resistente de este microorganismo y que tiene gran resistencia al medio e infectan a los herbívoros cuando estos se alimentan de pastos contaminados por esporas. Tales esporas son capaces de vivir más de 20 años y su letalidad es de un 80% cuando el individuo se infecta.

Cómo ya hemos dicho la enfermedad es causada por la bacteria Bacillus anthracis, más concretamente las características que ésta presenta en su cápsula y los componentes de la toxina que fabrica, son los factores que hacen que esta bacteria sea potencialmente peligrosa.

Imagen 1.: Ciclo patogenia ántrax

Cápsula:

La cápsula está compuesta por un polipéptido de ácido D-glutámico, no es tóxica en sí misma lo que permite evitar el sistema inmune del hospedador ya que no activa la respuesta inmune y, además, protege a la bacteria contra la fagocitosis.

La cápsula también desempeña un papel importante durante el establecimiento de la infección y es la encargada de evitar la coagulación de la sangre del hospedador, también es la causante de las reacciones inflamatorias y necróticas.

Además, la presencia de esta cápsula condiciona la virulencia de Bacillus anthracis ya que es la encargada de la diferenciación de la bacteria en dos variantes: lisa (S) y áspera (R), siendo la variante R menos virulenta que la S.

Exotoxinas:

Las toxinas del ántrax son el principal factor de virulencia del Bacillus anthracis. Son producidas exclusivamente en los tejidos de los animales infectados y vienen codificadas en los plásmidos pXO1 y pXO2. Están conformadas por las distintas uniones de tres polipéptidos conocidos como: factor edema, factor letal y antígeno protector.

Individualmente ninguna de estas tres proteínas es tóxica pero cuando el antígeno protector se combina con el factor edema forman la toxina edema y cuando se combina con el factor letal forman la toxina letal, siendo estas toxinas las que producen la muerte del animal.

La combinación de las diferentes proteínas se corresponde al modelo de toxinas active-binding en el que hay un único componente central, en este caso PA, al que se pueden asociar dos componentes distintos (EF y LF). Según este modelo el PA es el componente que se une al receptor celular para introducir a los otros dos componentes (EF y LF).

Factor edema: es una adenilato ciclasa dependiente de calmodulina su peso molecular es de 89 kDa y tiene una secuencia de 767 aminoácidos. Convierte, consumiendo ATP en el proceso,  la adenosina trifosfato en adenosina monofosfato cíclico (AMPc), lo que causa la aparición de un edema. También inhibe la función de los neutrófilos y produce la lisis de los macrófagos. El EF depende de iones de calcio, magnesio y calmodulina para su actividad. En su región amino-terminal se encuentran los aminoácidos responsables de la unión a PA, mientras que en la región carboxilo-terminal se encuentra el sitio catalítico y el dominio de activación dependiente de calmodulina. El factor edema permanece asociado al endosoma tardío luego del ingreso a la célula, con su región catalítica expuesta hacia el citoplasma.

Factor letal: tiene un peso de 90 kDa, está compuesta por 776 aminoácidos y es una metaloproteasa dependiente de zinc. Es altamente específica y dentro del macrófago induce un influjo de calcio y la inhibición de la síntesis de macromoléculas, además, promueve la apoptosis de los macrófagos. Su actividad radica en cortar la región amino-terminal de una familia de quinasas (MAPKK), inactivando de esta forma diferentes mecanismos de señalización celular. LF presenta cuatro dominios, el dominio 1 participa en la unión a antígeno protector, el dominio 2 está involucrado en la unión al sustrato MAPKK, el dominio 3 se encuentra dentro del dominio 2 pero tiene un plegado independiente y el dominio 4 contiene un centro catalítico.

Las proteínas EF y LF inhiben la secreción del Tumor Necrosis Factor-α (TNF-α) (22) y suprimen la respuesta inmunológica del hospedador permitiendo la propagación de Bacillus anthracis.

Antígeno protector (PA): tiene un peso molecular de 83 Kd y está compuesto por 735 aminoácidos. Está formado por dos subunidades que se separan tras la unión del PA a la célula. Su función es la de adherirse a la superficie de la célula y facilitar la entrada de los otros dos factores.  El antígeno protector posee cuatro dominios que son necesarios para que se produzca la intoxicación de la célula. En el dominio 1 amino-terminal se encuentra la región de corte para la activación, una secuencia de aminoácidos que estabiliza la estructura mediante la fijación de iones de calcio y la región de unión con LF Y EF. El dominio 2 se denomina dominio de heptamerización ya que es el implicado en la inserción del complejo en la membrana. Por otro lado el dominio 3 posee una zona hidrofóbica y participa en la oligomerización de PA a heptámero. Por último el dominio 4, carboxilo-terminal, es el que participa en la unión al receptor.

El proceso que sigue Bacillus anthracis para infectar a las células comienza con la unión del antígeno protector (PA), que es una proteína madura de 83 kDa, a dos receptores celulares: el marcador tumoral endotelial-8 y al gen de morfogénesis capilar 2. Tras esta unión el antígeno protector es clivado por una furina quedando su región carboxilo-terminal de 63 kDa unida a la superficie celular y liberándose la subunidad de 20 kDa. Para que se puedan unir los componentes EF y LF al antígeno protector es necesaria la eliminación del amino terminal.

Tras esto se produce la oligomerización del factor antígeno que pasa a formar un heptámero al que se unen el factor edema y el factor letal, que, ya que tienen regiones homólogas entre sí generan que la unión sea por competencia.

Este complejo proteico penetra en la célula por endocitosis tras sufrir cambios conformacionales que le permiten insertarse en la membrana. Tras esto el factor letal es introducido en el citosol de la célula y el factor edema en la membrana del endosoma.

Imagen 2: Estructura cristalina del PA de B. anthracis complejado por receptor CMG2. Fuente: PDB 1T6B.

En esta imagen podemos observar en azul el antígeno protector (PA), que posee 5379 átomos y 676 residuos. De color púrpura el receptor CMG2 que tiene 1316 átomos y 170 residuos. El peso total de la estructura es 103.77 kDa, y revela una superficie muy grande de interacción entre PA y CMG2 que, este a su vez tiene 2 dominios con PA y modela el heptámero (PA63), actuando como sistema sensible al pH y, asegurando una integración perfecta en la membrana.

Toda la estructura posee 4 ligandos no estándares: 

1.- Ion Calcio (Ca++); nos encontramos 2 átomos, con un peso molecular de 40.08 u, unidos fuertemente por enlaces covalentes al PA. En la siguiente imagen los veremos de color amarillo.

Imagen 3: átomos de Ca++, en estructura de PA de Bacillus anthracis. Fuente: PDB 1T6B.

2.- Ion Manganeso (Mn++); esta estructura posee 1 átomo, su peso molecular es de 54.94 u, unido al receptor de membrana CMG2, y muy próximo a PA. Lo veremos de color naranja, en la imagen que mostramos a continuación.

Imagen 4: átomo de Mn++ en receptor de membrana CMG2. Fuente: PDB 1T6B.

3.- Ion Sodio (Na+); podemos ver 2 átomos de Na+, unidos a PA con un peso molecular de 22.99 u. Los identificaremos de color verde, en la imagen siguiente.

Imagen 5: átomos de Na+ unidos a PA de Bacillus anthracis. Fuente: PDB 1T6B.

4.- Tetraetilenglicol (C8H18O5); es una cadena de 13 átomos, con 8 C, y 2 grupos OH terminales, está unido al PA y todo el conjunto de átomos tiene un peso molecular de 194.23. En la imagen que se muestra a continuación, veremos los O de color rojo y los C de color azul turquesa.

Imagen 6: cadena de Tetraetilenglicol unido a PA de Bacillus anthracis. Fuente: PDB 1T6B.

4.- Etiopatogenia e identificación:

La aparición de la enfermedad por Bacillus anthracis se da tras un período de incubación de unos 20 días (varía dependiendo del tipo de infección). La transmisión se da, generalmente, por vía oral cuando los animales herbívoros comen pastos contaminados. También es posible el contagio por vía respiratoria, cuando se inhalan las esporas, aunque se considera poco frecuente. Algunos estudios hablan, que también es posible la vía indirecta, a través de vectores como los tábanos, que pueden portar la bacteria tras haber estado en contacto con algún individuo infectado.

En el ser humano, el Ántrax puede manifestarse de 3 formas distintas:

  1. Forma cutánea; aparece entre el 1º y 7º día tras haber estado expuesto. Es la forma más común, y la vía de entrada del microorganismo es, a través de heridas en la piel. Comienza como una lesión sin prurito, con eritema y edema. Se desarrolla una vesícula, que después se rompe y da lugar a una placa necrótica. Suelen aparecer en cabeza, manos y piernas. Su pronóstico es favorable, pero en el caso de no tratarse, las lesiones pueden llegar a evolucionar a una septicemia generalizada, y producir la muerte en un 10% de los casos.

Imagen 7: Carbunco cutáneo en brazo de humano

  • Forma intestinal; la vía de infección se da por el consumo de alimentos contaminados. mal cocinados o tratados. El período de incubación de esta forma es desde horas, hasta 1 o 2 semanas. La tasa de mortalidad de esta forma es de un 25-60%. Los síntomas son vómitos, diarrea severa, fiebre, dolor abdominal, etc.
  • Forma pulmonar; la vía de entrada del microorganismo se da por la inhalación de las esporas del ántrax, pudiendo desarrollar ántrax pulmonar. El período de incubación es de 1 semana aproximadamente.  Las profesiones proclives a padecer este tipo de afección son, aquellas que trabajan en mataderos, procesadoras de lana, curtidores, etc, cuyos productos pueden venir de animales infectados.

Según el CDC, solo alrededor del 10-15% de las personas con ántrax pulmonar, que no reciban tratamiento, sobreviven. Sin embargo, un 55% aproximadamente, con un tratamiento intensivo, puede salvarse. Los síntomas son parecidos a los de una gripe, fiebre, tos, disnea, dolor muscular, etc.

Imagen 8: Radiografía torácica de paciente con ántrax pulmonar

Aparte del ser humano, también se infectan otras especies, que tiene relevancia destacar por salud pública.

Generalmente, se da en herbívoros y, en concreto: bovinos, ovinos, caprinos, equinos, porcinos y carnívoros.

Cabe destacar el carácter zoonósico de la enfermedad, aunque los casos son extremadamente raros, ya que, la seguridad alimentaria es exhaustiva en países desarrollados.

5.- Diagnóstico

El diagnóstico del Carbunco se realiza con muestras de sangre de individuos que se piensen estén infectados o también con hisopos de las mucosas de individuos que hayan muerto por dicha enfermedad.

Las técnicas a realizar para la identificación del Bacillus anthracis son:

  • Cultivo bacteridiano; el medio de cultivo más empleado es el agar sangre de caballo u oveja al 5-7%. Las colonias se mostrarán como blanco-grisáceas, no hemolíticas y superficie mate, siendo pegajosas al contactar con asa de siembra. Mediante Tinción de Gram, se observarán bacilos Gram +, abastonados, encapsulados no móviles y con esporas en su interior. También se puede realizar mediante PCR, para identificar y diferenciar cepas patógenas y vacunales.
Imagen 9.1
Imagen 9.2

Imagen 9.1: Agar sangre con colonias de      Imagen 9.2: Tinción de Gram de Bacillus 

Bacillus anthracis,                                      anthracis.

  • Visualización de la cápsula; la cápsula del microorganismo se puede visualizar en un frotis sanguíneo, realizando una tinción de azul de metileno policrómico, lo que confiere a la cápsula un color rosáceo, mientras que los bacilos se tienen de un color azul oscuro. Los bacilos se agrupan en pares o cadenas cortas en bisel, conocido como “vagones de ferrocarril”.

Imagen 10: Tinción de azul de metileno policrómico en frotis sanguíneo.

  • Pruebas inmunológicas; realizando técnicas de inmunofluorescencia se puede visualizar las cápsulas, aunque no es una técnica rutinaria para la detección del Bacillus anthracis.

Imagen 11: Anticuerpos fluorescentes de la cápsula de Bacillus anthracis.

  • Otras pruebas; en 1991 se desarrolló un método para la detección del microorganismo, empleando un antisuero pero, no presentaba mucha especificidad, porque es común a otras especies de Bacillus. También se puede emplear la lisis del fago gamma y la sensibilidad a la penicilina.

6.- Tratamiento contra ántrax

El tratamiento de elección para tratar el Carbunco, son los antibióticos. Los recomendados son Ciprofloxacino o la Doxiciclina por vía intravenosa, hasta conocer los resultados del antibiograma.

Para tratar el ántrax, se recomienda usar 2 o más antibióticos por la letalidad de este microorganismo. A su vez, las penicilinas, cefalosporinas o cotrimoxazol, están contraindicadas por que las cepas suelen ser resistentes a estos antibióticos.

7.- Ántrax como arma biológica

Debido a las propiedades y características del ántrax, este ha sido utilizado como arma biológica en numerosas ocasiones desde hace unos 80 años. La técnica utilizada es la liberación de esporas de ántrax en forma de aerosol ya que de las tres formas en las que se puede manifestar la enfermedad, cutánea, digestiva y respiratoria, esta última es la más letal. En 1979 tuvo lugar la liberación accidental de esporas de ántrax  en Sverdlovsk donde se infectaron 79 personas de las que murieron 68.

De los numerosos ataques con ántrax uno de los más recientes tuvo lugar en 2001 cuando varios políticos y periodistas de EEUU fueron infectados con esporas de ántrax presentes en su correspondencia.

La Organización Mundial de la Salud estimó que, la liberación de 50 kilos de ántrax en una población urbana de cinco millones afectarían a 250 000 habitantes, de los cuales 100 000 morirían, demostrando así la letalidad de la bacteria.

El Bacillus anthracis en España, se encuentra incluido en el Anexo II del R.D. 664/1997 y, está clasificado como agente biológico del grupo 3, que es aquel que puede causar una enfermedad grave en el ser humano y, presenta un serio problema para los trabajadores, con riesgo de propagarse a la colectividad, existiendo profilaxis o tratamiento eficaz. En España es una enfermedad de declaración obligatoria (EDO).

8. Bibliografía

  • Campos Perelló, L., & Pastor Armendariz, M. E. (2015). Caracterización analítica de las toxinas de Bacillus anthracis cepa Sterne 34F2.
  • Cabezas Sánchez, C., Vargas Herrera, J., Suárez Moreno, V., Herrera Bernuy, S., Mostorino Elguera, R., Morales de Santa Gadea, S., & Guillen Oneeglio, A. (2006). El ántrax: un problema de salud pública vigente.
  • PAVAN, MARÍA E., & PETTINARI, MARÍA J., & CAIRÓ, FABIÁN, & PAVAN, ESTEBAN E., & CATALDI, ANGEL A. (2011). Bacillus anthracis: una mirada molecular a un patógeno célebre. Revista Argentina de Microbiología, 43(4),294-310.[fecha de Consulta 16 de Enero de 2022]. ISSN: 0325-7541. Disponible en:   https://www.redalyc.org/articulo.oa?id=213021188010
  • Department of Health and Human Services. (2014). Resumen del ántrax U.S. Department of Health and Human Services Centers for Disease Control and Prevention Guía básica para comprender el ántrax. Mayo 2019, de Centers for Disease Control and Prevention
  • https://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/3.01.01_Carbunco_bacteridiano.pdf



AMPLIFICACIÓN ISOTÉRMICA MEDIADA POR BUCLE (LAMP)

Laura Díez Pérez & Jaime Franco Mansilla

La Universidad es discusión, es efervescencia, no es pensamiento único

Alberto Kornblihtt

REFLEXIÓN INICIAL

Para empezar esta entrada en el blog, nos gustaría abandonar esa visión del estudiante de Biología Molecular que debe publicar un trabajo de investigación sobre un tema concreto; y centrarnos en un estudiante, futuro científico, que adquiere poco a poco una visión más crítica de la realidad, una realidad llena de injusticias.

Pues bien, este trabajo no va a estar dedicado a la ciencia teórica, nos negamos rotundamente. ¿Por qué estamos acostumbrados a realizar solo este tipo de trabajos? Vale que sea importante el saber y el conocimiento, y vale que en base a ese conocimiento actúas y te planteas hipótesis, pero ¿de qué sirve plantearte una buena hipótesis si luego no conoces los medios para poder afirmar o refutar tu idea?

Pongámonos en contexto. Nuestro grado, Biología Sanitaria comprende un total de 240 créditos ECTS, de los cuales, únicamente 12 de ellos (el equivalente a cuatro asignaturas cuatrimestrales en cuatro años de carrera) se destinan a aprender técnicas de experimentación, esto es, un 5 %. Por acotar, quitemos los 18 créditos de las prácticas externas y los 12 del TFG. Nos quedan por tanto, 198 créditos donde la aptitud que más se valora es la memorística. Recita en tu mente si te acuerdas toda la glicólisis (si lo consigues es que lo tienes estudiado de forma muy reciente; ya te darás cuenta que al cabo del tiempo, la acabarás olvidando, ¿por qué? porque este sistema se basa fundamentalmente en memorizar, devolver toda la información que te sabes en un examen, y olvidar lo que has memorizado porque tienes que empezar a estudiarte el siguiente examen; memorizar y olvidar). Ahora, si yo te digo que pienses cómo estudiarías los efectos de un fármaco A en una enzima B, y que no solo estudies un experimento, sino que luego consigas interpretar los resultados, ¿a qué te cuesta más? Pero queremos ir un poco más allá, ¿de las técnicas que se te han venido a la cabeza, cuál de ellas es puntera actualmente? Esta última pregunta hace referencia a que, aunque sepamos de alguna técnica, estamos totalmente desactualizados. Nos acordamos cuando en nuestro grado nos explicaban la técnica de secuenciación Maxam-Gilbert, una técnica completamente obsoleta (vale que históricamente sea el primer método de secuenciación, y que está bien saber algo historia; pero está mucho mejor saber cuáles son las técnicas de secuenciación masivas actuales, que es lo que se usa ahora en un laboratorio y con lo que vamos a tener que vernos las caras en un futuro muy próximo).

Por todo esto, esta entrada al blog quiere centrarse en explicar el fundamento de una técnica, y también, para qué sirve y como utilizarla. Esta técnica es la amplificación isotérmica mediada por bucle (abreviada LAMP).

«¿De qué sirve aprender y memorizar contenidos sin saber luego su empleo práctico?»

Una segunda reflexión que queríamos plasmar aquí es que la literatura científica o los artículos científicos que explican ciertos temas son de escasa utilidad a los estudiantes, científicos jóvenes, e incluso a científicos ya expertos, debido a la complejidad con la que son explicados. Muchas veces la literatura científica está demasiado centrada en su especialidad y quizás esa información vaya dedicado a otro tipo de público. Por ello, es interesante, por ejemplo, abordar este problema con una entrada a un blog, donde hemos hecho ese ejercicio de desciframiento para que entendáis de una forma destripada y mascada el fundamento de la técnica.

Desde aquí proponemos a futuras entradas al blog a hacer lo mismo, que se dejen de tantas proteínas y fármacos, y que se centren en explicar técnicas y fundamentos; ya que estamos convencidos, de que algún lector que pase por este blog, le será muy útil esta información y podrá incorporar una LAMP para su hipótesis.

INTRODUCCIÓN

Realmente, esta técnica no es tan nueva como puede parecer, ya que el artículo original fue publicado en el año 2000 por científicos japoneses de las universidades de Tokio y Osaka. Entonces, podrías pensar que es un poco contradictorio lo que expusimos en la reflexión inicial: «mejor aprender técnicas más actuales»; y razón no te falta, pero, ¿acaso habías oído algo de esta técnica? (en nuestro caso, nos ponemos en el pellejo de alumnos que cursan nuestro grado, pero estamos convencidos de que la mayoría de estudiantes que pasen por aquí, esta técnica no les sonará de nada). No obstante, para que sea también de tu agrado, proponemos al final de la entrada, una revisión de las variantes de esta técnica, y alguno de sus usos actuales (que los tiene, y más cercanos de los que piensas).

¿Y por qué esta técnica para dedicarle una entrada a este blog y no otra? Simple. Esta técnica es fiel competidora de la tan conocida, sagrada y divina PCR (Polymerase Chain Reaction); y si es así, ¿por qué no había escuchado nada (o muy poco) de esta técnica? Pues porque la PCR funciona muy bien y está muy estandarizada ¿podríamos decir que existe una cara oculta de la ciencia (realmente, de los científicos) de aferrarse a lo conservador? ¿No es curioso? ¿Y qué pasó cuando los colegas médicos de Semmelweis llegaron incluso hasta amenazarle por simplemente querer introducir un hábito antiséptico como lavarse las manos? Nosotros creemos que es pura condición humana: el rechazo a lo novedoso.

Eppur si muove! («Y sin embargo, se mueve»)

Frase (mal atribuida) de Galileo Galilei al retratarse de su idea heliocéntrica frente a la Inquisición

Queremos preguntar en este contexto otra cosa ¿es el prestigio y la fama el que determina que algo se pueda implementar en la comunidad científica? ¿Tiene la misma relevancia los descubrimientos de un científico que no es conocido, que uno que lleva años nutriéndose de fama y premios? ¿No le pasó algo así al fraile Gregor Mendel con sus estudios de la herencia que no fueron valorados hasta su redescubrimiento por Hugo de Vries, Carl Correns, Erich von Tschermak y William Bateson años después? O al olvidado Michael Creeth en el descubrimiento de que la doble hélice de DNA se estabilizaba por enlaces de hidrógenos ¿a qué no habías escuchado su nombre en la historia del descubrimiento de la estructura del DNA? Además, ¿no hizo además el prestigio de Linus Pauling retrasar el descubrimiento de esta estructura debido a su idea de la triple hélice? ¿Quién os dice que dentro de unos años, no se redescubra el LAMP, ganando esa importancia que quizás pueda tener, y pase a ser la nueva panacea?

«El prestigio en ciencia, es un lastre para la ciencia»

Frase dicha por César Ángel Menor Salvan, que pasó desapercibida, pero que deja mucho que pensar

Además, si está técnica hubiera sido ideada por científicos europeos o estadounidenses, ¿crees que seguirías sin saber nada de ella? Dejamos esa pregunta en el aire para que te respondas tú mismo.

Michael Creeth a sus 23 años descubrió la estabilidad de la cadena del DNA. Científicos como Stephen Harding se esfuerzan para que su espectacular hazaña no quede olvidada en la historia. Tomado de @QuinteScience en Twitter.

Realmente, hay que diferenciar entre los descubrimientos científicos y la aparición de nuevas técnicas (aunque realmente, crear una nueva técnica de algún modo es un descubrimiento). Pues en el primer caso, los científicos son muy reaccionarios contra nuevos descubrimientos, en especial si cuestionan ideas de científicos prestigiosos. Con las técnicas pasa algo diferente, si funcionan bien se imponen rápidamente, si no se demuestra realmente útil (en las demandas científicas de la época), se queda en los archivos y queda desapercibida hasta que alguien encuentra una aplicación muy útil. 

«La ciencia avanza funeral a funeral»

Max Planck. Os recomendamos pasaros por el siguiente enlace.

Con todo esto no queremos estigmatizar la fama ganada (y merecida) de la PCR, pero creemos que si se explota esta técnica lo suficiente, podría llegar incluso a superarla. Es muy difícil que otra técnica se imponga a ella, si no aporta una clara ventaja, pero si sigues leyendo, verás como la técnica LAMP posee numerosas ventajas ( frente a la PCR y otras técnicas de amplificación de DNA).

En la imagen siguiente, podemos observar el incremento de las citas en los artículos científicos frente al LAMP, desde que se creó la técnica. En estos últimos años, ha habido un ligero aumento con respecto a lo normal, debido a que con la pandemia de la COVID19, mucha gente se ha puesto a probarla y sacarla a algún partido. Quién sabe si en algún momento la imposición de esta técnica en un aspecto concreto pueda hacer que se disparen sus citas dentro de unos años.

Gráfico tomado de PubMed al poner en la barra de búsqueda «loop mediated isothermal amplification», vemos como en 2021 se han publicado un total de 662 artículos, probablemente por su relación con las pruebas diagnósticas del SARS-CoV-2

Con todo, creemos que es importante que maticemos que en este caso, tanto de la LAMP como de la PCR, estamos hablando de su papel CUALITATIVO. Os adelantamos que la técnica la LAMP no es empleada para obtener una secuencia única y pura de una secuencia de nucleótidos (al menos hasta ahora), sino de amplificar una secuencia para demostrar o si existe o no esa secuencia.

¿Por qué decimos que la técnica LAMP podría superar a la PCR? Por las siguientes ventajas:

  • No requiere ningún aparato específico para llevarla a cabo, salvo un baño termostático o un termostato de bloque seco que casi todos los laboratorios suelen tener.
  • El tiempo de detección de una determinada secuencia es inferior a una hora porque se amplifica en condiciones isotérmicas (no se hace con diferentes ciclos de temperatura como la PCR). Únicamente se necesita un baño a una temperatura constante (de ahí que sea isotérmica) de unos 60-65ºC. Además, no necesita una desnaturalización previa de la cadena de DNA molde, porque la polimerasa que se emplea tiene actividad de desplazamiento de cadena (actividad parecida a la helicasa).
  • La detección es rápida y se puede hacer visualmente por turbidez, fluorescencia o usando reactivos con color.
  • Por todo lo anterior, es una técnica más simple y menos laboriosa que una PCR.
  • Es más específica, ya que emplea cuatro (o incluso seis) cebadores, frente a los dos que emplea la PCR.
  • Es más sensible que la PCR convencional y sus variaciones.
  • Es más barata.

Aunque esta técnica también tiene sus desventajas, como son:

  • El diseño de cebadores es mucho más complejo que en una PCR.
  • Pese a que la polimerasa empleada funciona en un rango amplio de temperaturas, no es tan termoestable como la Taq polimerasa usada en la PCR, por lo que a temperaturas por debajo o por encima de sus temperaturas de actuación, la polimerasa se inactivará.
  • La técnica no presenta un 100 % de eficiencia, por lo que se puede generar ruido de fondo ante amplificaciones no específicas o, por ejemplo, la formación de dímeros de cebadores.
  • No es tan conocida por lo que no se usa en muchos laboratorios como técnica habitual de diagnóstico.
Esta electroforesis muestra un resultado característico de LAMP, a nivel inferior podemos observar dos bandas que forman dímeros de cebadores. Imagen tomada y modificada de LavaLAMP™ DNA Component Kit User Manual.

No sabemos si hay reticencia a usar LAMP, pero cuando tu tienes una técnica estandarizada en tu laboratorio y que funciona (como la PCR), necesitas tener una motivación para implementar otra técnica, lo que normalmente es bastante costoso en tiempo y fondos. No sabemos qué ocurre con LAMP, pues hay gente que la está usando y les funciona muy bien y otros se quejan de dificultades en la reproducibilidad, eficiencia, y otras dificultades técnicas.

COMPONENTES DE LA MEZCLA DE REACCIÓN

Para el desarrollo de esta técnica, necesitaremos:

  • DNA molde: que se quiera amplificar.
  • Cebadores: cuyo diseño no es igual al de la PCR y que queda explicado en el fundamento de la técnica. Estos cebadores pueden ser de varios tipos:
    • Internos: cuyo tamaño debe oscilar entre 86 y 88 nucleótidos. Dos tipos: FIP (Forward Inner Primer) y BIP (Back Inner Primer): contienen una región complementaria a la hebra en la que encontramos la secuencia a amplificar y otra región que no es complementaria a la hebra y que permitirá la formación de bucles por autohibridamiento. Entre ambas regiones encontramos otra pequeña región que tampoco deberá hibridar y que es fundamental para la formación de los bucles y para que las estructuras formadas no estén tan compactas.
    • Externos: cuyo tamaño oscila entre 17 y 21 nucleótidos. También encontramos uno F y un B.
    • A veces se añaden dos cebadores más que son FLP y BLP, con el objetivo de aumentar más la especificidad.
  • dNTP: a iguales proporciones: dATP, dTTP, dCTP y dGTP. Para extender las cadenas.
  • ADN polimerasa: la más empleada es la Bst ADN Polimerasa (Bst procede de Bacillus stearothermophylus, ya que se obtiene de esta bacteria). Esta polimerasa destaca por presentar actividad polimerasa 5′->3′ y por no tener actividad exonucleasa, pero la característica que hace que sea diferente a otras polimerasas es su actividad de desplazamiento de cadena (por eso no se requiere desnaturalización previa). La temperatura óptima de actuación es de 60-65 ºC, aunque puede operar en un rango amplio de temperaturas. A partir de la enzima original, han surgido dos generaciones con modificaciones en su estructura, la ADN polimerasa Bst 2.0 (diseñado in silico, pero con una mayor eficiencia en la amplificación) y la ADN polimerasa Bst 3.0 (mayor velocidad de amplificación, mayor tolerancia a inhibidores, mayor termoestabilidad, capacidad para incorporar dUTP y actividad retrotranscriptasa). Otras enzimas empeladas en esta técnica, con similares características, es la ADN polimerasa Φ29 (descubierta por la bioquímica española Margarita Salas) o la SD polimerasa.

Modelo de la Bst DNA polymerase I (n+1). Tomado de pdb (código 6DSY). Pulse la imagen para visualizar el modelo tridimensional.

Comparación del fragmento con actividad polimerasa de las ADN polimerasas de Bacillus stearothermophylus, de Escherichia coli (fragmento de Klenow) y de Thermus aquaticus. En amarillo están los residuos conservados en las tres enzimas (un 54.5%), en verde están los que se encuentran en dos de las polimerasas, en azul se muestran los no conservados entre ninguna de ellas y en rojo están los residuos conservados en las enzimas de Bacillus y de Thermus que carecen de actividad exonucleasa 3′->5′ que si está presente en el fragmento Klenow. (Kiefer et al., 1997)

  • Betaína: sirve para potenciar la técnica y mejorar su rendimiento, ya que disminuye la cantidad de estructuras secundarias que se forman y que dificultan el desarrollo de la técnica. Además, aumenta la sensibilidad hacia las dianas y evita uniones inespecíficas; y desestabiliza los enlaces guanina-cisteína lo que ayuda a los cebadores a unirse a sus secuencias diana (ejerce cierta función desnaturalizante).
  • MgSO4: el magnesio sirve de cofactor a la polimerasa.
  • Buffer o tampón: Tris-HCl + (NH4)2SO4 + KCl + Triton X-100 + MgSO4. Estos componentes proporcionan el entorno adecuado para la reacción.
  • Triton X100: detergente no iónico que rompe conglomerados de ácidos nucleicos y proteínas.
  • Agua destilada.

Creemos que no es necesario poner en esta entrada un protocolo específico para el desarrollo de la técnica, pues dependiendo del kit que hayas comprado, este se deberá ajustar a sus condiciones impuestas.

LavaLAMP™ DNA Component Kit de la casa comercial Lucigen, es un ejemplo kit empleada para el desarrollo de la técnica LAMP. El protocolo empleado para este kit específico se expone en el siguiente enlace y su manual en este enlace.

FUNDAMENTO

Lo que ocurre en una LAMP es bastante complejo. En la siguiente imagen, tomada del artículo original, vemos todos las hibridaciones y estructuras secundarias que se forman pero si te pones a seguir el esquema, es algo difícil ¿verdad?. Además, el texto del artículo tampoco es que ayude mucho.

Figura 1. Esquema tomado del artículo original. (Notomi et al., 2000)

Por ello, vamos intentar explicar de una forma clara lo que ocurre en esta técnica. Te recomiendo que tengas paciencia y una mente bien abierta y atenta, ya que vas a ver que lo que ocurre, es complejo de pillar a la primera.

SITUACIÓN INICIAL: Partimos de una doble cadena (pese a que en la Figura 2 hemos representando una sola hebra con el objetivo de simplificar) con una región a amplificar (nuestra región de interés). Adyacentemente a esta región encontramos una serie de regiones que serán con las que hibridaremos una serie de cebadores (en las figuras, hemos decido mantener la nomenclatura empleada por artículo original de cada una de las regiones). Las regiones más cercanas a la región a amplificar se denominan regiones internas (que a su vez se subdividen en otras dos regiones), y las más alejadas, regiones externas. Las regiones que se encuentran por delante de la región a amplificar (corriente abajo, en sentido 3′) se denotan con la letra F (del inglés forward) y los que se encuentran por detrás (corriente arriba, en sentido 5′) con la letra B (backward). El subíndice c marcado en algunas regiones indica complementariedad (así por ejemplo, la región F1c será complementaria a la región F1; podrás pensar que la figura 2 es incorrecta, pero no, dentro de poco entenderás por qué).

Figura 2. Situación inicial de la técnica LAMP. Realizado con BioRender.

El diseño de cebadores utilizados es muy específico y muy diferente al diseño de cebadores empleados en técnicas como la PCR. En la LAMP, los cebadores internos, inicialmente solo complementan con la zona más externa de la región interna de la hebra de DNA (si tomamos como ejemplo el cebador interno F, solo la región F2 es la que complementa con la región F2c de la hebra de DNA). La otra región del cebador tendrá la misma secuencia que la zona más interna de la región interna de la hebra de DNA (en el cebador interno F, hablamos de la región F1c) por lo que no hibrida. Esto te puede parecer extraño (nosotros pensamos lo mismo cuando lo vimos por primera vez), pero es fundamental que sea así para la formación de bucles y estructuras secundarias que se forman durante el desarrollo de la técnica.

Figura 3. Cebadores empleados en la técnica. Realizado con BioRender.

PASO 1: Una vez hemos echado todos los componentes de la mezcla de reacción, lo primero que ocurrirá es que la actividad desplazadora de cadena de la polimerasa (junto con la betaína en el caso de que la hayamos echado) permitirá la apertura de la doble hélice de DNA y con ello, permitirá la unión de los cebadores. Por como dijimos antes con el diseño de cebadores, el cebador FIP solo se unirá por su región F2 a la región F2c de la cadena. El cebador externo F3 también se acabará uniendo. Aquí ya empieza lo curioso de la LAMP, en función de donde se una la polimerasa y donde empiece a desplazar la doble hebra, favorecerá a que la síntesis del DNA se produzca a partir del cebador interno o externo, pero no solo del F, sino también del B. Nosotros ejemplificaremos a partir de aquí, suponiendo que la polimerasa ha permitido una unión primera del cebador interno F (si lo pensamos, si la síntesis hubiese empezado por el externo, daría una situación muy similar al material de partida).

Figura 4. Apertura de las cadenas y unión de los cebadores. En la imagen se representa la unión de los cebadores F, pero en otra situación podría darse el caso que se unieran los B. Realizado con BioRender.

PASO 2: Mientras se va sintetizando la cadena complementaria a partir del cebador interno F, otra polimerasa podría desplazar la hebra en una posición cercana a la región F3c del DNA y permitir la unión de ese cebador externo. De esta manera, empezará la síntesis de otra cadena complementaria, y debido a esa actividad desplazadora de la polimerasa, según sintetiza la hebra a partir del cebador externo, la hebra sintetizada a partir del cebador interno se irá soltando y quedando desplazada.

Figura 5. Vemos como se inicia la síntesis desde el cebador externo y como la polimerasa desplaza la hebra sintetizada a partir del cebador interno. Realizado con BioRender.

PASO 3: Aquí empieza la formación de bucles característicos del LAMP. Recordemos que dijimos que el diseño de cebadores debía de ser de una determinada manera. Con ese diseño conseguimos que la región F1c del cebador interno, que no había logrado hibridar con la cadena, autohibride ahora con la región F1 de la cadena que se había sintetizando (utilizando como molde la región F1c de la cadena inicial). ¿Y por qué se forma un bucle? Esto lo comentamos anteriormente por encima, el cebador interno hibrida con dos regiones que deben estar separadas por otra región denominada espaciador. Cuando nosotros diseñemos los cebadores internos, la región que supuestamente debería aparear con el espaciador, la modificaremos para que no pueda hibridar (en el artículo original esta región la denominaron TTTTT, debido a que colocaron solo timinas, pero realmente, podemos colocar cualquier secuencia que sepamos que no va a hibridar con el espaciador). Además, la presencia de esta secuencia también es fundamental para que las estructuras no estén tan compactas, siendo sitios por lo que es más fácil que la polimerasa pueda acceder y desplazar cadenas. A pesar de esto, el bucle principalmente se forma porque la región que comprende (en este caso la región F2) es de mayor tamaño que esos espaciadores.

Figura 6. Formación del bucle al hibridar la región F1c del cebador interno con la región F1 de la hebra amplificada. Realizado con BioRender.

PASO 4: Cuando la polimerasa que amplificaba a partir del cebador externo acaba, genera una doble hebra que hace que partamos de la situación inicial (volver al paso 1). La hebra que había formado el bucle quedará suelta completamente y sus regiones B quedarán expuestas para su hibridación con sus cebadores. Aquí podría unirse directamente el cebador externo y dar una secuencia como la inicial (cuando la polimerasa llega al bucle, lo acaba deshaciendo y sintetiza unas bases sobre ellas. Nosotros desarrollaremos las imágenes a partir de la unión del fragmento interno, que al igual que pasaba con el F, este solo hibridará con una de sus regiones, que en este caso, es la B2, que hibrida con la región B2c de la hebra que toma como molde.

Figura 7. Vuelta a la situación inicial en la doble hebra de arriba. Unión del cebador interno en la región B. Realizado con BioRender.

PASO 5: La polimerasa sintetizará la hebra complementaria desde el cebador interno.

Figura 8. Síntesis de la hebra a partir del cebador interno. Realizado con BioRender.

PASO 6: Al igual que pasaba antes, la polimerasa podrá unirse al cebador externo mientras se va sintetizando la hebra a partir del cebador interno, por lo que según se sintetice la nueva, se irá desplazando la otra, y como el cebador B no se había unido en su totalidad, la región que queda suelta, B1c, podrá autohibridar con B1. Es importante señalar que, cuando la polimerasa llega a la región en la que había un bucle, debido a su actividad desplazadora, conseguirá deshacer el bucle y replicar utilizando su secuencia como molde.

Figura 9. Se puede observar como la polimerasa desplaza la hebra, se forma el bucle y como la otra polimerasa ha deshecho el bucle anterior. Realizado con BioRender.

PASO 7: El resultado final del paso anterior es la formación de una doble hélice similar a la inicial (volver al paso 1) debido a la síntesis a partir del cebador externo, y una estructura conocida como dumb-bell (mancuerna en español), ya que al soltarse de nuevo la región F, se vuelve a formar el bucle que existía antes.

Figura 10. Formación de una hebra que permite partir de la situación inicial y una estructura a modo de mancuerna. Realizado con BioRender.

PASO 8: Ahora, la polimerasa se unirá a la región F1 (en este caso, no podrá unirse a la región B1c porque el extremo 3′ únicamente se lo proporciona la región F1).

Figura 11. Unión de la polimerasa a la mancuerna. Realizado con BioRender.

PASO 9: Como pasaba antes, la actividad desplazadora de la polimerasa deshará el bucle formado. A continuación, el cebador interno especifico de la región F se unirá al bucle que queda en la estructura. Si lo pensamos, este cebador podría haberse unido también durante el paso 8; al igual que el cebador interno de la región B, que se podría haber unido en el paso 8 y generar una estructura diferente a la que estamos exponiendo. Y es que eso también ocurre. Como veis, hay muchas posibilidades, lo que hace que se generen estructuras secundarias muy complejas.

Figura 12. Unión de la polimerasa a la mancuerna. Realizado con BioRender.

PASO 10: Una vez se ha unido el cebador interno a la región F2c del bucle, la polimerasa empezará su síntesis a partir de ahí. La región F1c del cebador no logra unirse a F1 porque esta queda unida a la estructura generada en el paso 9. No obstante, también podría darse el caso de que una polimerasa desplazase esa región y se uniera el cebador por esa región, y de nuevo, según sintetice, desplazará a la otra hebra. Esta hebra desplazada tendrá la misma capacidad que las otras ya dichas, y una de sus regiones podrá autohibridar (B1c complementa a B1), pudiéndose unir otra polimerasa.

Figura 13. Síntesis de una cadena desplazando otra en la que se forma un nuevo bucle. Realizado con BioRender.

PASO 11: La polimerasa que se había unido en el bucle nuevo formado, por su misma actividad, desplazará a la hebra que se encuentre, y con esto, se formará dos estructuras: una nueva mancuerna (derivada de la hebra que desplaza la polimerasa y que de nuevo consigue autohibridar) y una cadena con un bucle y que consigue tener dos regiones de interés iniciales. De la estructura en mancuerna, pasará lo mismo que en el paso 8, pero ahora, el extremo 3′ lo cede la región B1, por lo que a partir de aquí, los pasos se repiten, pero de manera opuesta. A la otra estructura, se le podrá unir el cebador BIP (debido a que su bucle presenta la región B2c, complementaria a la región B2 del cebador)

Figura 14. Formación de dos nuevas estructuras. Realizado con BioRender.

PASOS SIGUIENTES: A partir de aquí, las estructuras que se forman son cada vez más complejas, y creemos que no es necesario explicarlas, pues con entender lo que se ha explicado en pasos anteriores, es suficiente para lograr entender el fundamento de la técnica: diseño de cebadores que permitan autohibridamientos posteriores y actividad desplazadora de cadena de la polimerasa. Estas dos cosas resumen el fundamento de la técnica, y sin ellas, no puede desarrollarse una LAMP. Además, otro aspecto importante en esta técnica, es que la amplificación que se produce es exponencial, generando muchas estructuras secundarias y muy variadas que comparten una cosa entre sí, y es que presentan al menos una región que es la que inicialmente era la de interés.

De una manera más visual, las estructuras que se forman, pueden ser observadas en este vídeo, tomado de New England Biolabs:

VARIACIONES DE LA TÉCNICA Y MÉTODOS DE DETECCIÓN

Como variante de LAMP tenemos la RT-LAMP que mediante la incorporación de una polimerasa con actividad retrotranscriptasa o trancriptasa inversa (siendo la polimerasa de elección la Bts 3.0) a la mezcla de reacción, nos permitirá analizar muestras de RNA. Es esta técnica la que también se está empezando a emplear en la detección del virus SARS-CoV-2.

En este gráfico se muestran los resultados obtenidos en un RT-LAMP con el diseño de cebadores para dos genes de la línea celular Jurkat (ACTB, izquierda; HMBS2, derecha).  Los resultados más rápidos se observaron con un sistema de 2 enzimas (Bst 2.0 + WarmStart RTx), pero también se observó una amplificación sólida con Bst 3.0 sin retrotranscriptasa adicional. El resto de sistemas empleados mostraron un rendimiento variable, pero no tan bueno como los anteriores. Tomado de Polymérases pour Amplification Isothermale. Dr. Nathan Tanner, New England Biolabs Inc.

Tras realizar la LAMP, deberemos demostrar si se ha producido la amplificación, y para ello existen varias formas de poder hacerlo:

  • Una de ellas es acoplar una LAMP (o RT-LAMP) a un método de bioluminiscencia en tiempo real (BART), lo que da lugar a LAMP-BART y a RT-LAMP-BART. Mediante este método se va detectando la amplificación a la vez que esta va ocurriendo.
Fundamento del método de bioluminiscencia acoplado a una técnica LAMP. Modificado y tomado de https://www.achipia.gob.cl/wp-content/uploads/2018/08/1-3M-Uso-y-ventajas-de-amplificacion-isot–rmica-en-la-deteccion-microorganismos-004.pdf
  • Una detección más clásica es mediante turbidimetría y visualización directa. En la reacción de la polimerasa se libera pirofosfato inorgánico (PPi) y la LAMP genera mucho producto de amplificación (la reacción es exponencial), por lo que la cantidad de PPi será inmensa. Este pirofosfato reacciona con el magnesio que formaba parte de mezcla de reacción y forma pirofosfato de magnesio, que enturbia el medio en el que se encuentra. El pirofosfato de magnesio, y por tanto, la turbidez, es proporcional a la cantidad de producto amplificado. Existen métodos que pueden pueden medir de manera cuantitativa la turbidez de un medio.
Imagen en la que se detectan los productos amplificados por LAMP mediante turbidimetría y se comparan con los obtenidos en una PCR y una posterior separación mediante electroforesis. Se puede ver esa relación entre mayor turbidez y mayor intensidad de la banda electroforética. Imagen tomada de http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310-02652014000100014
  • La electroforesis en gel de agarosa, es una técnica empleada para visualizar la amplificación de una LAMP. A nivel de diagnóstico, esta técnica no se suele emplear debido al tiempo que tarda en correr un gel. El resultado en una electroforesis de una LAMP se asemeja a una escalera (no una banda continua como una PCR), debido a la cantidad de estructuras secundarias que se forman durante la amplificación.
Gel electroforético de agarosa representativo del resultado de ensayo de LAMP para la detección de E. canis groESL operon. Carril 1, escalera de DNA de 100 pbs (Fermentas); Carriles 2-5, escalera característica de la LAMP para pueblas positivas de E. canis; Carril 6, ningún producto de LAMP con una muestra infectada com B. canis; Carril 7, control negativo de agua; Carril 8, escalera de DNA de 1 Kb (Fermentas). Tomado de https://dx.doi.org/10.4067/S0301-732X2013000200012
Con el paso del tiempo, el carril muestra una señal continua en la que va desapareciendo esa apariencia de escalera. Esto es debido a que la reacción de amplificación acaba saturándose, formándose todo tipo de estructuras secundarias. Imagen tomada por el profesor Alfredo De Bustos Rodríguez y realizada en la Universidad de Alcalá.
  • Otras formas de detección son mediante el uso de fluorocromos, la técnica del quencher-fluróforo, la detección colorimétrica al final de la reacción, mediante sondas específicas…
En la imagen se observan los productos obtenidos tras una amplificación con LAMP y detectados con un colorante fluorescente en una lámpara de luz ultravioleta. Imagen tomada de http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310-02652014000100014

El siguiente artículo se muestra una revisión de todos los métodos empleados para la detección de los productos amplificados por la técnica LAMP: Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection

¿POR QUÉ ES NECESARIO CONOCER EL FUNDAMENTO DE UNA TÉCNICA?

A parte de la curiosidad que puede despertar, al menos en nosotros, conocer lo que está pasando a nivel molecular en cualquier proceso que podamos estudiar (¿no os ha pasado que os habéis imaginado a las partículas, átomos y moléculas como si tuvieran vida propia? Cuando realmente somos fruto de un conjunto de interacciones aleatorias), consideramos que saber qué es lo que ocurre en una técnica es esencial por dos cosas:

  • Primero, porque si sabemos que ocurre en cada momento, es más fácil una mejor comprensión de los resultados, pudiendo detectar antes tus fallos experimentales.
  • Segundo, porque la ciencia está en constante evolución, y sabiendo qué ocurre en cada momento, podemos conseguir modificarla para adaptarla a nuestro experimento, y por ejemplo, surgir variantes de la técnica original (como la RT-LAMP), o incluso, generar nuevas técnicas. Por ejemplo, ¿Cuál es uno de los inconvenientes de una técnica ELISA? Su sensibilidad. Si hibridamos una LAMP con una ELISA (técnica LAMP-ELISA), podremos conseguir que su sensibilidad aumente.
Esquema que representa como podría desarrollarse una LAMP-ELISA. Modificado y tomado de https://doi.org/10.1039/C9AY02246E

APLICACIONES

Esta técnica se está usando para detectar la presencia de DNA y de RNA en diversas muestras y para el diagnóstico clínico.

Algunos ejemplos son:

  • Detectar RNA de SARS-CoV-2. En varios países se acepta el uso de esta técnica a la hora de viajar al extranjero como prueba para detectar el SARS-CoV-2.
  • Detectar otros virus de RNA como el virus del Zika, virus de la gripe A (Influenzavirus A) y B (Influenzavirus B).
  • Detectar parásitos como Schistosoma, Loa loa y Mansonella perstans.
  • Analizar la calidad de los alimentos y del agua.
  • Detectar, en enfermos con cáncer de mama, células tumorales en el ganglio centinela durante el intraoperatorio.

CONCLUSIÓN

Con esta entrada al blog hemos querido hacer un repaso básico pero detallado de la técnica LAMP, para que podáis conocer una técnica que no se cuenta en clase pero que creemos que en un futuro os podrá servir de ayuda en vuestros trabajos o labores de científicos.

Pese a que es poco conocida, creemos que dentro de unos años se explotará lo suficiente para que se empiece a enseñar en las universidades, pues como ya indicamos, tiene múltiples ventajas respecto a otras técnicas (como la PCR), permitiendo amplificar de una forma más rápida, específica, sensible y fiable sin la necesidad de ningún aparato salvo uno que mantenga unas temperaturas contantes.

Desde esta entrada fomentamos también para futuros seminarios de la asignatura de Biología Molecular a que habléis de técnicas, ya que al final, sin técnicas no hay experimentación.

Para finalizar, te dejamos estas preguntas para que te las respondas tú mismo: ¿Qué te ha parecido esta técnica de amplificación? ¿Sabías que existen otras técnicas de amplificación de ácidos nucleicos como la NASBA, SAMART, SDA, RCA, HDA o la SPIA? Desde aquí proponemos temas para futuras entradas al blog.

Isothermal DNA Amplification Technologies. Tomado de New England Biolabs.

BIBLIOGRAFÍA

  1. Brazas, R., 2017. LavaLAMP™ DNA Component Kit. [online] Lucigen.com. https://www.lucigen.com/docs/manuals/MA171_LavaLAMP_DNA_Component_Kit_User_Manual.pdf
  2. Ito, M., Watanabe, M., Nakagawa, N., Ihara, T., & Okuno, Y. (2006). Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. Journal of virological methods135(2), 272–275. https://doi.org/10.1016/j.jviromet.2006.03.003
  3. Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. Structure (London, England : 1993)5(1), 95–108. https://doi.org/10.1016/s0969-2126(97)00169-x
  4. Loreto, M., 2016. Diseño y puesta a punto de un método LAMP (Loopmediated isothermal amplification) para el diagnóstico de enfermedades producidas por cestodos. [online] Gredos.usal.es. https://gredos.usal.es/bitstream/handle/10366/131526/TG_MegidoDom%C3%ADnguezL.pdf
  5. New England Biolabs, 2022. Loop-Mediated Isothermal Amplification. [online] International.neb.com. https://international.neb.com/applications/dna-amplification-pcr-and-qpcr/isothermal-amplification/loop-mediated-isothermal-amplification-lamp%20
  6. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research28(12), E63. https://doi.org/10.1093/nar/28.12.e63
  7. Parada, D., & Hernández, P. (2014). Método de amplificación de ácido nucleico en un paso en el ganglio centinela del cáncer de mama. Revista Venezolana de Oncología26(2), 62-69.
  8. Park, G. S., Ku, K., Baek, S. H., Kim, S. J., Kim, S. I., Kim, B. T., & Maeng, J. S. (2020). Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Journal of molecular diagnostics : JMD22(6), 729–735. https://doi.org/10.1016/j.jmoldx.2020.03.006
  9. Sánchez, E., Nina, M., Aguirre, P., Arce, M., Toro, N., & Vilela, R. (2014). Amplificación isotérmica mediada por LOOP (LAMP) de ácidos nuclecios en el diagnostico clínico. Revista CON-CIENCIA2(1), 127-140. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310-02652014000100014&lng=es&tlng=es.
  10. Wang, X., Seo, D. J., Lee, M. H., & Choi, C. (2014). Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species. Journal of clinical microbiology52(2), 557–563. https://doi.org/10.1128/JCM.02883-13

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.



VIH: Estructura, mecanismos de acción y proyectos de vacunas

Helena Pérez López e Iván Pérez Jara Biología Molecular 3º Biología Sanitaria

¿QUÉ ES EL VIH?  
El VIH o Virus de la Inmunodeficiencia Humana es un virus perteneciente a la familia Retroviridae, en particular del género Lentivirus, que se caracteriza por largos períodos de incubación e infecciones persistentes en el tiempo. Estos virus no son oncogénicos y su genoma está formado por un RNA monocatenario bastante extenso. Existen dos especies de VIH, el de tipo 1 y el de tipo 2, siendo el primero mucho más común, aunque cabe destacar que también existen muchos otros grupos, subtipos y cepas de este virus que tienen diferencias genéticas entre ellos. Su mecanismo de acción se caracteriza por el ataque al sistema inmune del hospedador y en particular por la destrucción de linfocitos T-CD4, lo que causa a largo plazo una enorme susceptibilidad a patógenos oportunistas.

La mayoría de las personas que contraen VIH en el mundo se contagian de VIH-1 (aproximadamente un 95% de los contagiados) y su progresión es más rápida que la del VIH-2, cuya recuperación es más complicada y el cual es poco común fuera de África Occidental; se sabe que tiene cierta resistencia a antirretrovirales e incluso puede no reaccionar ante ninguno de los que existen actualmente en el mercado, ya que tiende a presentar 3 mutaciones que afectan a la transcriptasa inversa o retrotranscriptasa (mutaciones K65R, Q151M y M184V).

ESTRUCTURA En cuanto a su estructura, el virión del VIH tiene una morfología esférica, aproximadamente de 90-120 nm y consta de varias capas. En la zona más externa encontramos una bicapa lipídica formada por 72 espículas, codificadas por las glicoproteínas gp120 y gp41, que favorecen la unión e interacción de los viriones con las células diana del organismo. Estas glicoproteínas, gp120 de superficie y gp41 con dominio transmembrana, se producen gracias a las proteasas del hospedador, que lisan la polipoproteína gp160.

La capa intermedia es una cápside de estructura icosaédrica y en la zona central se encuentra la nucleocápside que contiene una estructura tubular con el material genético viral en su interior en forma de dos cadenas idénticas de RNA. Este RNA consta de diferentes genes, seis genes reguladores o accesorios (nef, tat, rev, vpr, vif y vpu) y tres genes estructurales (pol, gag, env). Estos últimos son especialmente importantes ya que son las dianas moleculares de la vacuna Mosaico (Ad26.Mos4.HIV y gp140 bivalente).

  1. El gen Pol codifica para una poliproteína precursora Pol que dará lugar a las enzimas virales. Estas son: -La proteasa p10, una aspartil-proteasa que corta a las proteínas Gag y  Pol.

-La transcriptasa inversa o P51, que transcribe el RNA viral monocatenario a DNA bicatenario. Es una DNA polimerasa que tiene actividad tanto dependiente de RNA (en la primera síntesis) como de DNA.

-La P31 o integrasa, con actividad exonucleasa, endonucleasa y ligasa que se encarga de integrar el DNA viral en el genoma de la célula hospedadora; no es dependiente de ATP.

-La enzima P15 RNAsa, cuya función es eliminar el RNA del dúplex RNA-DNA que se forma al actuar la retrotranscriptasa para permitir la síntesis de la segunda cadena de DNA; esta RNAsa se encuentra en la subunidad p66 de la transcriptasa inversa, ya que colabora con ella.

2. El gen Gag al traducirse da lugar a una poliproteína Gag o p55, que durante la traducción se asocia a la membrana del hospedador por la miristilación de su extremo amino terminal y en la maduración se procesa por una proteasa, formando una serie de proteínas: -Proteína p17: proteína de la matriz que favorece el anclaje a membrana y dirige el complejo de pre-integración hacia el núcleo. También se encarga de estabilizar la propia envoltura. -Proteína p24: forma parte de la cápside. -Proteína p7, proteína de la nucleocápside que permite el reconocimiento y la integración del RNA al virión recién formado y facilita la retrotranscripción. -Proteína p6, es parte de la nucleocápside y permite la incorporación de la proteína accesoria vpr al virión y la gemación del virión y la membrana de la célula hospedadora.

3. El gen Env codifica la proteína Env o Gp160, encargada de la formación de las 72 espículas y la envoltura (bicapa lipídica) a partir de elementos de la membrana del hospedador. Tras la glicosilación y la escisión de esta proteína se obtienen: -Proteína gp41, proteína transmembrana que forma parte de las espículas -Proteína gp120, cuya función es la fijación de las células CD4; además se une de forma no covalente a gp41 y forma la cabeza externa de las espículas.

4. En cuanto a los genes reguladores, estos dan lugar a dos proteínas reguladoras, que son la proteína Tat, transactivador transcripcional que regula la expresión de los genes del VIH al unirse a la región TAR, y la proteína Rev, factor regulador de la expresión del VIH que controla la exportación de mRNA hacia el citoplasma. Es decir, ambas proteínas son clave para la expresión génica viral y su acción sinérgica incrementa dicha expresión.

5. Destaca también la existencia de una serie de proteínas accesorias con funciones variadas, como son: -Proteína Vif (p23), que favorece la infectividad y la maduración de la partícula viral anulando la acción del factor ApoBEC3G. -Proteína Vpr (p15), queayuda en la inserción del complejo de pre-integración en el núcleo. -Proteína Vpu (p16), proteína única en el VIH-1 encargada de promover la degradación de la proteína CD4 en el RE y la liberación de los viriones. -Proteína Nef (p27), inductora de la producción de quimiocinas que favorece la activación de células T y desregula la expresión del MHC-1 y de los linfocitos CD4.

6. Dentro del genoma viral existen también otras secuencias redundantes, las LTR (Long Terminal Repeats), que están en los extremos del genoma cuando el virus se encuentra en estado de provirus y que favorecen la integración del genoma vírico y la regulación de la transcripción y la poliadenilación. 

MECANISMO DE ACCIÓN DEL VIH El VIH no tiene capacidad de autorregulación, por lo que necesita infectar a una célula que actúe de hospedadora para poder continuar su ciclo vital; estas células invadidas suelen ser mayoritariamente linfocitos T CD4+; no obstante, también pueden infectar otras células que cuenten con los receptores CD4 y los correceptores de quimiocinas CCR5 y CXCR4, como son las dendríticas, los macrófagos, las células de la microglía,etc.

La primera etapa de su ciclo biológico comprende la penetración del virus y la integración en el genoma celular. La entrada del VIH en la célula se produce entonces por dos interacciones de los anteriormente citados receptores (CD4, CCR5 y CXCR4) en la membrana celular diana con la gp120 viral, produciéndose lo que se denomina acoplamiento. Primero interacciona la gp120 con el receptor CD4, se produce un cambio conformacional que permite la interacción con los correceptores y posteriormente se produce otro cambio conformacional que da lugar al plegamiento de gp41. Esto permite la fusión de la membrana celular con la envoltura lipídica del virus, que da paso a la inserción  de la nucleocápside y la decapsidación del genoma vírico. 

Tras la fijación, la penetración y la liberación viral nos encontramos entonces con el RNA vírico en el citoplasma celular, listo para ser transcrito por la transcriptasa inversa, de tal modo que se obtenga un dúplex DNA-RNA. Posteriormente, se separa esta doble cadena y se elimina la hebra de RNA, se forma gracias a la transcriptasa inversa otra hebra de DNA (actividad DNA sintetasa DNA dependiente) y se forma DNA de doble cadena; parte de este se integra en el genoma de la célula hospedadora que se encuentra en el núcleo celular gracias a los extremos cohesivos formados por la integrasa, aunque cabe destacar que hasta un 90% del DNA viral en linfocitos infectados no está integrado en el genoma celular. Se finaliza de esta manera la primera etapa del ciclo biológico del VIH.

Durante la segunda mitad de su ciclo biológico se sintetizan los componentes virales, se ensamblan y salen los viriones. A partir de este momento el VIH puede permanecer latente, replicarse y transcribirse con normalidad o sufrir una replicación masiva y aumentada.

El inicio de la transcripción del provirus se da dependiendo de factores virales y celulares que interaccionan con zonas de las regiones LTR; una vez estimulado el promotor viral comienza la transcripción gracias a la RNA polimerasa II de la célula diana, y el transcrito obtenido pasa del núcleo al citoplasma con ayuda de Rev (proteína viral). Este transcrito es un mRNA complejo con intrones y exones que se ha procesado antes de ir hacia el citoplasma, ya que en este dará comienzo la traducción, obteniéndose poliproteínas que tras su procesamiento darán lugar a proteínas víricas funcionales que se ensamblan junto con RNA viral para formar viriones. 

Estas nucleocápsides saldrán de la célula hospedadora mediante un proceso de gemación a través de la membrana plasmática, constituyendo viriones al formar su envoltura lipídica con parte de la membrana de la célula de la que están saliendo; estos viriones son partículas maduras que pueden infectar otras células.

FASES DE LA INFECCIÓN POR VIH La infección por VIH se desarrolla en etapas y debe ser tratada rápidamente para evitar la proliferación del virus, ya que en estados avanzados se puede dar el Síndrome de inmunodeficiencia adquirida (SIDA). El VIH va destruyendo de manera gradual el sistema inmunitario de la persona infectada, ya que ataca a los linfocitos T CD4+ y a otros tipos de células inmunitarias. Existen tres fases durante la infección por VIH, que son:

-Infección aguda. Esta primera etapa se manifiesta tras 2-4 semanas desde el contacto con el virus y se caracteriza por la aparición de síntomas generales, similares a los de la Influenza. Durante esta etapa la carga viral es muy alta ya que la tasa de reproducción y propagación del virus es muy rápida. -Infección crónica. Es una fase de latencia que puede durar hasta 10 años o más, y en ella los afectados suelen ser asintomáticos ya que la tasa de reproducción del virus es muy baja. -SIDA. Etapa final de la infección por VIH en la cual el sistema inmune está prácticamente destruido y el afectado es susceptible a contraer infecciones oportunistas y cáncer por la inmunodeficiencia que padece. Esta fase se caracteriza por la alta carga viral que presentan los enfermos y es diagnosticada cuando el paciente tiene un recuento de células CD4 de menos de 200/mm3 o si presentan ciertas infecciones oportunistas, y la esperanza de vida no suele ser mayor de 3 años.

DETECCIÓN DEL VIH Y FÁRMACOS ACTUALES No existen manifestaciones clínicas inmediatas de la infección por este virus sea cuál sea la vía de transmisión (sexual, sanguínea o perinatal), por lo que las pruebas para su detección se realizan bajo sospecha de haber contraído el virus o en personas en riesgo de contraerlo (que provengan de zonas con una alta prevalencia de VIH, parejas de individuos que ya lo han contraído,etc); estas pruebas varían desde pruebas rápidas para la detección de anticuerpos de VIH hasta pruebas moleculares, tal y como la PCR anidada, la RT-PCR, ELISA… En cuanto a los fármacos, actualmente hay una gran variedad de fármacos existentes en el mercado que evitan la infección por VIH y la progresión y empeoramiento de la enfermedad, y en muchos casos se utilizan varios al mismo tiempo para mejorar su efectividad en lo que se llama TARGA o Terapia Antirretroviral de Gran Actividad. Estas terapias consisten en el uso de medicamentos que bloquean al virus en diferentes etapas de su ciclo biológico, es decir, se utilizan distintas clases de medicamentos que actúen de manera complementaria para evitar la multiplicación del virus y para evitar que se dé el Síndrome de inmunodeficiencia adquirida o SIDA. Los fármacos usados se clasifican según la proteína viral a la que afecten, por lo que encontramos inhibidores de la proteasa, de la integrasa, inhibidores de la fusión viral e inhibidores de la retrotranscriptasa análogos (como la Zidovudina) o no análogos de nucleósidos. El objetivo de estos medicamentos es conseguir que las personas infectadas reduzcan la carga viral significativamente hasta que sea indetectable mediante pruebas, de tal modo que no puedan tampoco transmitir el virus por la baja carga viral que presentan.  A lo largo de los años también se han investigado posibles vacunas contra este retrovirus, y a continuación se explicará con detalle el mecanismo de actuación de la última vacuna que se está estudiando para evitar contraer el HIV.

VACUNA FRENTE AL VIH Si bien la accesibilidad a la terapia antirretroviral y la profilaxis previa a la exposición permiten reducir la carga viral, gracias a que bloquean su replicación, no consiguen eliminar por completo el virus del organismo. Es por esto que a día de hoy existen proyectos destinados a producir una vacuna que consiga tanto prevenir la infección por VIH como reducir la carga viral en aquellos pacientes previamente infectados. Pese a que la idea general de la vacuna está clara, han suscitado serios problemas que dificultan la creación de una vacuna segura y eficaz que cumpla ambas condiciones, por lo tanto, los ensayos clínicos realizados han tenido un resultado negativo, es decir, han fracasado. Los problemas derivados del VIH que complican estos experimentos son debidos, principalmente, a la capacidad del virus para replicarse continuamente de forma muy rápida y al ser indetectable por nuestro sistema inmune. A continuación, detallaremos más el proceso:

  • Variabilidad genética: El VIH es un virus que presenta una amplia tasa de replicación, por lo tanto, al haber un mayor número de copias es normal que surjan un mayor número de mutaciones. Normalmente, los anticuerpos que se producen son específicos, es decir, la respuesta inmunitaria no se podría producir en las diferentes cepas que vayan surgiendo, debido a los pequeños, pero significativos cambios que producen estas mutaciones. Como consecuencia, el diseño de una vacuna que proteja de todas las variantes está suponiendo un gran reto a lo largo de estos años de investigación.
  • Evasión de la respuesta inmune (la capa de glucanos): La proteína de pico viral trimétrica Envelope (Env) es la única diana antigénica que presenta la superficie del VIH, la cual es responsable de la maquinaria de fusión del propio virus. Como os contamos anteriormente, el trímero Envelope está constituido por 3 protómeros que se encuentran asociados de forma no covalente. Esta unión ocurre entre gp120 y las subunidades gp41 con el dominio transmembrana, ambos formados después de la escisión postraduccional de gp160 y la posterior glicosilación.

Por lo tanto, se produce un encubrimiento de la superficie por glucanos, lo que conlleva a un mecanismo de evasión de la respuesta inmune, puesto que, los azúcares sintetizados han sido formadas por nuestro propio organismo. Esto se debe a que el virus no es capaz de realizarlo por sí mismo, de tal manera que el sistema inmunitario no los detecta como extraños, así que no son destruidos y pasan desapercibido, es decir, como si presentase un “disfraz”.   

Como consecuencia de ambos problemas, nuestro sistema inmune humoral es incapaz de generar anticuerpos ampliamente neutralizantes para la gran diversidad de cepas que el VIH presenta.

MECANISMOS DE ACCIÓN DE LAS VACUNAS 1.- Desarrollo de Ab ampliamente neutralizantes. Debido a la gran diversidad de secuencias de la proteína Env del VIH, podemos diferenciar distintos niveles según el grado de sensibilidad a la neutralización que presenten las diferentes cepas, permitiendo realizar así una clasificación de las mismas. Para ello, debemos de tener en cuenta que el trímero Env es metaestable (se encuentra en aparente equilibrio, pero puede cambiar a un estado más estable) y presenta un estado conformacional “abierto”, uno “intermedio” y otro “cerrado”.

Lo importante de esta clase de vacunas es que la respuesta de células TCD 8 está dirigida a regiones conservadas dentro de proteínas internas, es decir, a la proteína estructural Gag, así que, la glicosilación de Env no supondría una confusión a la hora de diseñar la vacuna. Por otro lado, los epítopos de células T son secuencias de péptidos lineales a diferencia de las estructuras terciarias y cuaternarias de los bnAbs, facilitando respuestas protectoras más amplias al ser más efectivas.

PROYECTOS Y ESTUDIOS A DÍA DE HOY A pesar de que ha habido 7 tipos de vacunas utilizadas en sus respectivos proyectos y estudios, hoy en día no han demostrado ser capaces ni de tratar ni prevenir la infección. De igual manera se están realizando numerosos estudios aún no finalizados. A continuación, explicaremos más detalladamente aquellos que tienen más repercusión y oportunidad de éxito:

  • MOSAICO: Es un ensayo de eficacia con el objetivo de evaluar un vector de adenovirus cebado con inmunizaciones de refuerzo de proteína Env recombinante. Se trata de un ensayo multicéntrico que recluta participantes de varios países. En este caso, para evitar problemas relacionados con la seroprevalencia de Ab5 preexistentes se eligió el serotipo 26 (Ad26) para desarrollar la vacuna del vector Ab recombinante. Básicamente, Mosaico utiliza una vacuna tetravalente con vector de Ad26 (AD26.Mos.Hiv) cuyo contenido son partes iguales de 2 vectores de mosaico Gag-Pol Ad26 distintos y 2 vectores de mosaico Env Ad26 junto a un refuerzo de proteína Env gp140. En este caso, los antígenos mosaico tienen una serie de secuencias de VIH recombinantes computacionalmente con el fin de albergar la gran diversidad de secuencias de proteína del VIH, además de provocar respuestas de células T más fuertes y amplias. Tras probar esta vacuna en monos rhesus se confirmó cierta protección frente a SHIV (el virus de la inmunodeficiencia en simios), gracias a la asociación de Ab de unión a Env. En resumen, la vacuna tetravalente logró un mayor éxito que la vacuna trivalente anteriormente estudiada, obteniendo respuestas de células T CD4 específicas de antígenos y anticuerpos superiores. Concretamente, género respuestas de unión de IgG dirigidas a gp120 e IgG3 específica de Env de subtipo C en el 66% de los que recibieron las 4 dosis. Actualmente, el proyecto sigue realizándose.
  • MODERNA: La vacuna de Moderna es una vacuna de ARNm basadas en Env cuyo objetivo es generar respuestas robustas específicas de antígenos, a partir de estimular la actividad de células inmunes conocidas como células B de la línea germinal. La estimulación de estas células B especiales puede producir anticuerpos ampliamente neutralizantes que permitirían combatir al VIH. Fundamentalmente, estos bnAbs producidos por nuestro sistema inmunológico podrían tanto protegernos de las cepas más peligrosas como de posibles nuevos subtipos que surjan, debido a la rápida replicación del virus y, como consecuencia, la rápida tasa de mutación. Dentro de las células B de la línea germinal hay diversos tipos, pero son muy raras y cada una de estas células contiene un plano de un anticuerpo y realiza dos procesos:
    • Una hipermutación somática con el objetivo de generar células hijas capaces de generar anticuerpos con versiones ligeramente diferentes, facilitando así su actuación frente a otro tipo de cepas.
    • La expansión clonal. es decir. las células portadoras de la variante más exitosa producen muchas copias de sí mismo para enfrentarse a la infección.

En el VIH, la proteína que es reconocida será la gp120 de Env, en otras palabras, es la herramienta que utiliza el virus para acoplarse a la célula diana para infectarla. La importancia que tiene esta proteína es que se ha mantenido evolutivamente, por lo tanto, va a ser el target principal de este tipo de vacunas. Conociendo esto, el mecanismo de actuación de la vacuna de Moderna es sencillo. Utiliza como antígeno, la proteína OD-GT8 6 omer, la cual se parece a la parte de acoplamiento de gp120. Esta proteína ha sido probada en ratones dando como resultado una estimulación acompañada de una hipermutación somática de células B de la línea germinal, produciendo el bnAb llamado VRC 01.

¿Cuál es el problema de realizar experimentos con OD-GT8 6 omer? Su fabricación es costosa y tardía. Para ello Moderna ha implementado las instrucciones necesarias para su formación en forma de ARN mensajero para que sea nuestro cuerpo quién la fabrique, en vez de hacerlo artificialmente y añadirlo después. De esta manera, inyectamos el ARNm, protegido por una envuelta, que sería capaz de ingresar a la célula. Una vez en la célula, el ARNm que contiene la información para producir la proteína OD-GT8 6 omer saldría de la envoltura para dirigirse a los ribosomas libres donde se traduce. Por consiguiente, se generan proteínas que quedan en la superficie celular y que son reconocidas por las células del sistema inmune estimulando en específico a las células B de la línea germinal y produciendo bnAbs preparados para combatir cualquier posible infección en un futuro.

Estos avances y técnicas que ha desarrollado Moderna han sido capaces de llevarse a cabo gracias a las vacunas frente COVID. Estas vacunas también usan este mecanismo de ARNm, pero utilizando otro tipo de proteína que es similar a la proteína espiga de la superficie del SARS-COV2. Cabe reconocer que otro hecho importante es que este ARNm no entraría en el núcleo de la célula, puesto que, la síntesis de la proteína se realiza en los ribosomas libres y, por ende, no cambia el ADN de las células.

BIBLIOGRAFÍA

ÍNDICE DE IMÁGENES

.




¿Somos todos iguales frente al COVID? Los anticuerpos rebeldes que te mandan a la UCI

Por Irene Torres Pulido y MªIsabel López Rodrigo – Universidad de Alcalá de Henares

Todos conocemos ya a los protagonistas de esta historia: los anticuerpos, una de las principales líneas de defensa de nuestro organismo frente a los invasores del exterior. Pero ¿es esto siempre así?

Recientemente se ha probado que estos, uno de nuestros mayores aliados, podrían actuar en nuestra contra en el caso del COVID y ser responsables de muchas de las complicaciones que hacen que la enfermedad se desarrolle de forma más grave.

Tras los dos últimos años, todo el mundo conoce ya el COVID y hemos sido bombardeados con datos sobre qué perfiles son más vulnerables frente al virus:  Personas de avanzada edad, determinados grupos sanguíneos, hombres… La lista continúa. Pero ¿a qué se deben estas diferencias? 

Pues, al parecer, es posible que muchas de estas diferencias que llevan al desarrollo de un COVID de mayor gravedad se deban a la presencia de unos autoanticuerpos presentes sólo en parte la población y que no se lo ponen fácil a nuestro sistema inmune para combatir la infección.

Mientras que los anticuerpos luchan contra infecciones: los autoanticuerpos, se dirigen por error a las células, tejidos y órganos del propio organismo. En el caso del COVID, los autoanticuerpos que nos interesan van a atacar al interferón tipo I (IFN-I).

1. Interferón

Para saber cómo funcionan estos autoanticuerpos y por qué agravan la enfermedad es fundamental conocer la función del interferón.

En el caso de la COVID, para contener el virus cuando este entra en nuestro organismo, nuestro cuerpo lanza un primer “ataque” que es inespecífico y sirve para retrasar su propagación mientras se activan otros mecanismos de defensa más específicos. En este ataque inicial es donde se libera el interferón (IFN), que es una sustancia producida por determinadas células como glóbulos blancos o células infectadas y que ayuda a combatir infecciones y enfermedades.

Figura 1: Imagen que ilustra las fases de la respuesta inmune

Pertenecen a la familia de las citoquinas, que son moléculas que se usan para la comunicación entre células y reciben su nombre porque interfieren con la replicación de virus, aunque esta no es su única función. También juegan un papel esencial a la hora de desencadenar distintos mecanismos de defensa para combatir todo tipo de patógenos, incluyendo bacterias, parásitos o tumores.

Generalmente, los interferones I y III poseen propiedades más enfocadas a combatir el virus mientras el interferón II se relaciona más con la activación de respuestas específicas.

Si te apetece profundizar…

Al entrar en nuestro cuerpo, las partículas virales son reconocidas por receptores de nuestro sistema inmune que se localizan en el citosol o las membranas de células como monocitos y fibroblastos. Estos reconocen las moléculas víricas como extrañas e inician la respuesta inmune, en la que una de las primeras sustancias de defensa en ser liberadas es el interferón tipo I, un tipo de citoquinas producidas por las células del sistema inmune innato como antivirales.

Este interferón se une a células específicas y, mediante la vía JAK-STAT, activa la expresión de ISGs, un conjunto de genes que al ser activados por IFN producen moléculas antivíricas y factores de transcripción entre cuyas funciones se encuentran:

  • Evitar la entrada del virus a células que aún no han sido infectadas.
  • Interferir con el ciclo vírico: a nivel de la replicación o liberación del virus
  • Aumentar la sensibilidad del resto de células al interferón aumentando la síntesis de sus receptores.
Figura 2: Se muestra cómo los autoanticuerpos bloquean las diversas funciones que lleva a cabo el IFN.

¿Pero cómo se relaciona el interferón con el COVID y los autoanticuerpos?:

En el caso de pacientes con cuadros de COVID más graves se ha visto que suele haber una deficiencia en los niveles de interferón. Esto tiene sentido, puesto que sin un mecanismo de defensa en los primeros estadios de la infección es más fácil que se agrave la situación, ya que nuestro sistema inmune no está rindiendo al 100%. Pero esto nos lleva a la siguiente cuestión, que sería:¿Qué causa la deficiencia de IFN?

Los científicos han encontrado tres principales motivos que llevan a la disminución de los niveles de esta molécula:

  1. La presencia de autoanticuerpos que neutralizan el interferón (especialmente en contra de IFN-a2 e IFN-w, que son dos tipos de IFN tipo I).
  2. Defectos genéticos en la producción del interferón.
  3. La inhibición de la producción de interferón causada por el propio SARS-Cov-2.
  4. En este artículo profundizaremos en la primera de estas razones.

2. Autoanticuerpos:

Una de las primeras dudas que nos pueden asaltar sobre los autoanticuerpos es: ¿Qué hacen ahí? ¿Por qué fabrica nuestro cuerpo armas contra sí mismo y sabotea sus propias defensas?

En condiciones normales, si nuestro organismo detecta una partícula extraña a él desencadena una respuesta inmunológica para combatirlo. Esto es lo que ocurre frente a virus, bacterias o durante un proceso alérgico. Pero el problema viene cuando, por error, nuestro cuerpo detecta como ajenas células o moléculas propias y, de igual forma que si se tratase de una infección, comienza a sintetizar anticuerpos que atacan al propio organismo. A estos los denominamos autoanticuerpos.

Existen “autoanticuerpos naturales” en todos nosotros y, aunque pueda parecer contradictorio, esto puede ser una ventaja, ya que tienen baja afinidad y no serán muy reactivos frente a nuestros tejidos, pero colaboran en la eliminación de proteínas y lípidos oxidados o células muertas.

El problema es que estos autoanticuerpos pueden iniciar respuestas autoinmunes frente a moléculas propias como el interferón y servir de “plantilla” para la fabricación de autoanticuerpos que sí tengan mucha afinidad y puedan desencadenar patologías.

Frente al interferón I:

Tras comprobar que existía una deficiencia en los niveles de IFN I en pacientes que sufrían cuadros de COVID más grave se comenzó a estudiar si existía un defecto genético en estas personas que fuese el responsable de dicha deficiencia. Fue estudiando esto que se dieron cuenta de que no solo existía este defecto genético en algunos pacientes, sino que en el 10% de los 987 sujetos con los que hicieron el estudio existían anticuerpos neutralizantes frente IFN-I que atacaban más concretamente a IFN-α IFN-ω

Frente a otras moléculas del sistema inmune:

Recientemente, la revista Nature publicó los resultados de un estudio que demostraba que no sólo existen autoanticuerpos frente al interferón I, sino que también podríamos encontrar en menor proporción autoanticuerpos que atacasen a moléculas como quimioquinas, el interferón tipo III u otras citoquinas. En lo que se traduce esto es en la inhibición de una variedad de funciones inmunológicas que van a debilitar nuestro sistema inmune y ponérselo más fácil al virus para atacar a nuestro organismo.

3. Desigualdades en cifras

La actual pandemia de COVID-19 ha alcanzado ya a 293 millones de personas, habiendo perdido la vida 5,5 millones de ellas. Estas escandalosas cifras aumentan día tras día, por lo que resulta de vital importancia (además de centrarse en la búsqueda de vacunas, tratamientos y medidas de prevención efectivas,¡) invertir en la investigación de cuál es el mecanismo patogénico que sigue el virus y de nuevos factores de riesgo, aún no descubiertos, que permitan ubicar a aquellas personas con riesgo de desarrollar una patología grave.

En esta entrada queremos obviar lo que ya conocemos todos, como las posibles complicaciones asociadas a la obesidad o el tabaquismo (factores de riesgo comunes a prácticamente todas las enfermedades) e introducir los nuevos términos que hemos explicado antes como “interferón de tipo I” y “autoanticuerpos” para explicar por qué el COVID ataca más a una parte de la población. Son numerosos los estudios recientemente desarrollados o que actualmente se están llevando a cabo que tienen como base estos dos conceptos.

Uno de los quizás más llamativos, que incita a seguir investigando, es el siguiente, publicado en la revista Science, en el que se buscó la presencia de autoanticuerpos frente al interferón de tipo I en pacientes graves, asintomáticos y controles sanos. Los datos obtenidos fueron:

Figura 3: tabal de datos del estudio mencionado.

Como se puede observar las cifras son sumamente significativas, y permiten al menos, solidificar un poco la relación entre la gravedad de la patología y la presencia de autoanticuerpos.

Quizás, que los autoanticuerpos se encuentren en un 10,2% de los pacientes graves, no parece un número demasiado llamativo. Pero al extrapolar estos datos a los mundiales y considerando “casos graves” a aquellos que fallecieron (cifra que es mucho superior, ya que muchos de los casos graves sobrevivieron) encontraríamos más de medio millón de personas portadores de los mismos.

Si seguimos analizando el estudio expuesto, cabe destacar además que, de los 101 sujetos, el 94% de ellos eran varones y el 49,5% de ellos eran mayores de 65 años; estadísticas que se cumplen en estudios similares.                                                                                     Durante la pandemia han sido numerosos los titulares que afirmaban que los ancianos y los hombres son los “peores parados” en cuanto a los síntomas de esta patología. Son numerosas las hipótesis propuestas que justifican este hecho, pero… ¿podrían tener algo que ver los autoanticuerpos o anomalías relacionadas con el interferón de tipo I?

¿Por qué el COVID es especialmente letal en los hombres?

Coronavirus: El impactante gráfico que demuestra que la Covid mata mucho  más a hombres que a mujeres
Figura 4: diferencias entre hombres y mujeres en cuanto a la mortalidad frente al COVID-19.

Como se puede observar en la figura 4, la tasa de mortalidad es superior en hombres que en mujeres en todos los rangos de edad. En esta entrada vamos a explicar una teoría que explicaría a qué se debe esto, aunque es importante mencionar que existen otras hipótesis.

Como hemos visto, ante el ataque del virus, nuestro cuerpo libera interferón, por lo que una deficiencia en esta molécula podría generar una enfermedad de peor pronóstico.

Teniendo en cuenta los tres factores que contribuyen al decrimento del interferón tipo I que hemos mencionado antes (punto 1 del artículo), el hecho de que los hombres padezcan esta enfermedad de forma más grave debe estar relacionado con, al menos, una de ellas.

En este caso, la inhibición que produce el COVID sobre la producción de interferón no va a depender del sexo; por lo que eso nos deja los autoanticuerpos y los factores genéticos como únicas alternativas para explicar este suceso.

Se ha demostrado que, en comparación con las mujeres, son muchos más los hombres que presentan autoanticuerpos que actúan inhibiendo al interferón de tipo I. Pero además, también entra en juego un factor genético, que no va a contribuir a que los hombres estén en igualdad de condiciones en la lucha frente a la COVID, y este es el gen TLR7.

Este gen se halla en el cromosoma X, del que las mujeres presentan 2 copias, pero los hombres sólo una, por lo que posibles alteraciones en la secuencia de DNA de dicho gen afectarán más a los hombres.

El gen TLR7 codifica para un receptor que recibe el mismo nombre (TLR7), y que se encuentra en las células dendríticas plasmacitoides. Estas células intervienen en la respuesta antiviral liberando interferón tipo I; y es precisamente gracias al receptor TLR7 que pueden detectar el ARN vírico e iniciar la respuesta inmune.

Figura 5: Mecanismo de acción del receptor TLR7 en las pDC para la producción de interferón de tipo I.

Si te apetece profundizar…

Una vez detectado el ARN viral por medio del receptor tipo toll 7 TLR7, las células dendríticas plasmacitoides (pDC) forman grupos pDC-pDC autoadhesivos que producen los interferones de tipo I. Es por ello que, mutaciones en la vía de señalización de esta citocina también están vinculadas a los casos más graves de COVID-19.

Este hecho también esta teniendo mucho impacto en el mundo de la investigación. Recientemente se ha realizado un estudio consistente en la búsqueda de variantes genéticas raras en una muestra de 1202 hombres, para estudiar la presencia de una deficiencia funcional en TLR7. Los resultados muestran que dichas variantes se encontraron en el 1,8% de pacientes menores de 60 años con patología grave, pero no fueron identificados en ninguna de las 331 personas asintomáticas o que presentaban síntomas muy leves.

¿Por qué el COVID es especialmente letal en ancianos?

En el caso de los ancianos, en un estudio publicado por Science Inmunology, se determinó que el 20% de pacientes de más de 80 años con patología grave presentaban autoanticuerpos bloqueantes del interferón I, lo que provoca por lo tanto, que el sistema inmune de estos enfermos (sumado al resto de factores de riesgo asociados con la edad) tenga menos capacidad de defensa frente a la infección.

Y ahora… ¿qué?

  • Como se ha descubierto, la integridad de la respuesta del interferón de tipo I para hacer frente al COVID-19 es de vital importancia, por lo que resultaría bastante prometedor el desarrollo de posibles tratamientos con interferón específico contra la enfermedad o bien terapias dirigidas a la eliminación de estos autoanticuerpos.
  • Podría ser además de gran utilidad la identificación de pacientes con mayor probabilidad de desarrollar patología grave mediante la realización de cribados pre-sintomáticos de muestras de sangre en busca de estos anticuerpos neutralizantes del interferón de tipo I.
  • En el posible tratamiento basado en la transfusión de plasma de pacientes convalecientes para lograr mejoras en casos de mayor gravedad, sería importante analizar que el sujeto no sea portador de autoanticuerpos ya que estos neutralizarían esa respuesta inmunitaria inicial frente al virus.
  • Estos hallazgos han tenido tanta repercusión que a pesar de que continúa en estudio, hace un año en Reino Unido se inició un ensayo a gran escala de un tratamiento consistente en la inhalación de interferón beta para su introducción directa en las vías respiratorias; el resultado esperado consistía en lograr una respuesta antiviral más fuerte, incluso en aquellos pacientes que se encontraban debilitados.
BIBLIOGRAFÍA
  • Autoantibodies against type I IFNs in patients with life-threatening COVID-19. (2020, 24 septiembre). Science. https://www.science.org/doi/10.1126/science.abd4585
  • Wang, E. Y. (2021, 19 mayo). Diverse functional autoantibodies in patients with COVID-19. Nature. https://www.nature.com/articles/s41586-021-03631-y?error=cookies_not_supported&code=b6092a1b-e2ed-4094-91c4-ae5871deb2c1
  • Zhou, W. (2021, 26 febrero). Auto-antibodies against type I IFNs are associated with severe COVID-19 pneumonia. Nature. https://www.nature.com/articles/s41392-021-00514-6?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Signal_Transduction_and_Targeted_Therapy_TrendMD_1&error=cookies_not_supported&code=e0a9c9f7-cdc3-4efe-86e7-e6b29f9795ab
  • Bastard, P., Gervais, A., & le Voyeur, T. (2021, 20 junio). Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 6. https://www.science.org/doi/full/10.1126/sciimmunol.abl4340
  • del Fresno, C. (2020, 2 octubre). Papel del interferón en la COVID-19 grave. Empíreo Diagnóstico Molecular – Diagnóstico de VIH y ETS. https://www.empireo.es/papel-del-interferon-en-la-covid-19-grave
  • Sinha Dutta, S., & Henderson, E. (2021, 9 marzo). What are Autoantibodies? News Medical Life Sciences. https://www.news-medical.net/life-sciences/What-are-Autoantibodies.aspx
  • Beck, D., & Aksentijevich, I. (2022). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Retrieved 6 January 2022, from https://www.science.org/doi/10.1126/science.abd4585
  • Simona Pascolini, Antonio Vannini, Gaia Deleonardi, Michele Ciordinik, (2020). COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful?, from http://pubmed.ncbi.nlm.nih.gov/32989903.
  • Describen dos nuevas variantes del gen TLR7 que se asocian a formas graves de la COVID-19 en hombres jóvenes y sanos – idibell. (2022). Retrieved 6 January 2022, from https://idibell.cat/es/2021/07/describen-dos-nuevas-variantes-del-gen-tlr7-que-se-asocian-a-formas-graves-de-la-covid-19-en-hombres-jovenes-y-sanos/

BIBLIOGRAFÍA DE LAS IMÁGENES:

  • Figura 1: Así reacciona el sistema inmunitario frente al nuevo coronavirus. (2020, 8 mayo). Instituto Salud Carlos III. https://www.isciii.es/InformacionCiudadanos/DivulgacionCulturaCientifica/DivulgacionISCIII/Paginas/Divulgacion/InformeCoronavirusInmunidad.aspx
  • Figuras 2, 3 y 5: Creadas por los autores
  • Figura 4: Ana Blanco, Nature, Diferencia entre mortalidad por Covid de hombres y mujeres. https://www.elespanol.com/ciencia/salud/20200904/impactante-grafico-demuestra-covid-mata-hombres-mujeres/517949556_0.html



CRISPR-Cas: mecanismo molecular, historia y aplicaciones en potencia.

Andrea Delgado Ruiz y Néstor Román Cueva Ramírez. Grado en Biología Sanitaria, Universidad de Alcalá.

El sistema CRISPR-Cas es un mecanismo de defensa presente en bacterias y archeas cuyo objetivo es degradar aquel material genético exógeno que trate de invadir el organismo. 

Como su propio nombre indica, el complejo CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) consta de una región promotora encargada de regular la transcripción seguida de varias secuencias palindrómicas de pequeño tamaño que se repiten constantemente en el genoma y que, además, están interrumpidas por otras secuencias no repetidas y similares en tamaño que reciben el nombre de espaciadores (spacers). Dichos espaciadores se corresponden con fragmentos genéticos de origen extra cromosómico que el microorganismo adquiere tras entrar por primera vez en contacto con un patógeno, tratándose así de un curioso sistema de inmunidad adquirida con memoria. 

Además del complejo CRISPR, también es necesaria la presencia de los genes Cas, cuya expresión dará lugar a las endonucleasas encargadas de cortar y degradar el material genético exógeno. En función de la endonucleasa que se exprese, podemos diferenciar tres tipos de sistema: CRISPR I activa a Cas3, CRISPR II activa a Cas 9 y CRISPR III activa a Cas6. De estos tres sistemas, el más empleado en ingeniería genética actualmente es CRISPR-Cas9 debido a la alta tasa de eficiencia de la endonucleasa Cas9. 

El proceso inmune mediado por este sistema puede dividirse dos fases: 

1. INMUNIZACIÓN: Incorporación de secuencias espaciadoras tras la exposición al patógeno. 

Cuando la célula huésped (bacteria u archea) entra por primera vez en contacto con un organismo patógeno detecta su material genético y lo reconoce como exógeno. Este reconocimiento es gracias a la presencia de una secuencia específica en el DNA conocida como motivo adyacente del protoespaciador (PAM). Tras el reconocimiento de esta secuencia PAM, la célula incorporará los nucleótidos adyacentes a esta al genoma como un nuevo espaciador. 

*Durante este proceso, una de las secuencias palindrómicas repetidas se duplica, y así el nuevo espaciador queda flanqueado en el genoma por una secuencia repetitiva a cada lado. 

2. INMUNIDAD: Formación y actuación del complejo CRISPR-Cas. 

La región CRISPR se transcribe dando lugar a un RNA largo y no codificante denominado pre-crRNA. En el caso del sistema CRISPR-Cas9, se transcribe adicionalmente otro RNA no codificante que es complementario a la secuencia palindrómica repetida y que recibe el nombre de tracrRNA. Este se va a unir a las secuencias repetidas del pre-crRNA formando un dímero crRNA/tracrRNA que será reconocido por una RNAsa III, la cual se encargará de procesar y generar un crRNA maduro. 

Finalmente, la endonucleasa Cas, se asocia a el crRNA maduro formando el complejo CRISPR-Cas. Será este crRNA maduro el encargado de guiar al complejo hasta el blanco, es decir, hasta reconocer una secuencia complementaria que será degradada por la acción de Cas. 

Como curiosidad, la gran variedad de elementos genéticos invasores ha favorecido que bacterias y archeas evolucionen creando distintos tipos de enzimas Cas para generar una respuesta inmune más efectiva, las cuales, además de la actividad de corte, poseen otras funciones auxiliares específicas de cada tipo.

Figura 1. Editada y traducida (2022) en BioRender.com. Reprinted from «CRISPR-Cas9 Adaptive Immune System of Streptococcus pyogenes Against Bacteriophages», by BioRender, July 2020.

Para poder llegar a describir con precisión todos los pasos de este curioso mecanismo molecular fueron necesarios muchos años de investigación en los que se vieron implicados numerosos científicos a nivel internacional. Sin embargo,  el origen de este gran descubrimiento tiene lugar en España allá por el año 1987, cuando dos jóvenes microbiólogos, uno en Alicante (F. Mojica) y otro en Utrecht, se dedicaron a estudiar una serie de elementos genéticos repetitivos presentes en la bacteria Escherichia coli. Posteriormente, en el 2000, se encuentran estas mismas secuencias repetitivas en muchas otras especies bacterianas y se observó que junto a estas regiones repetitivas se encontraban cuatro genes distintos presentes en muchos otros procariotas también, situados de manera invariable respecto a las repeticiones.  En el 2002 se hizo referencia por primera vez al nombre CRISPR, con el que se denominó a estas repeticiones por las características que tenían como ya se ha comentado previamente. Los genes asociados fueron denominados cas. 

En el 2005 Mojica encuentran similitudes entre los espaciadores asociados a cispr y el material genético de ciertos virus que afectan a bacterias, sospechando vinculación de estas secuencias con la inmunidad de los virus, lo que sientan las bases para el posterior desarrollo de las aplicaciones; hipótesis que fue demostrada experimentalmente dos años después. En ese momento empezó a investigarse la manera en la que actuaban sistemas inmunes CRISPR; en 2012 se descubrió que se genera un corte asociado a CRISPR para fragmentar el DNA y que el factor estrella de este proceso es la proteína cas9. El hecho del descubrimiento de la actividad endonucleasa de este sistema y su alta especificidad para los sitios de corte hizo replantearse la posibilidad de usarlo como sistema de edición génica. De hecho, este mismo año, se hicieron los primeros cortes con este sistema; en un tubo de ensayo, el primero de todos, realizado por un equipo liderado por Doudna y Charpentier, y en una célula viva de mamífero más tarde. 

A partir de este momento se empieza a entender este sistema como un conjunto (CRISPR/Cas9). En 2013, tras estos últimos experimentos, surge el boom de esta técnica y se le da empieza a dar real importancia; en los años anteriores prácticamente había pasado desapercibida. El motivo de tanto alboroto es que esta técnica suplía las carencias de otras técnicas de edición genética anteriores, como la complejidad, alto coste y escasa eficacia. Aunque hoy en día sea considerado uno de los sistemas más eficientes y precisos, su potencial aún es una incógnita.

Figura 2. Timeline de la historia de CRISPR-CAS9, creada por los autores de la entrada (2021).

Está técnica revolucionaria en la edición genética ofrece oportunidades prácticamente ilimitadas. Solo con conocer la secuencia objetivo y que el gen que se desea modificar se encuentre junto a un motivo PAM, se puede cortar, pegar o editar. Por tanto, esta herramienta se utiliza en casi cualquier ser vivo, así como en campos muy dispares.

En humanos se utiliza en medicina, para prevenir y tratar enfermedades de distintos tipos; genéticas, virales, mentales e incluso cáncer, para realizar diagnósticos o para modificar animales y conseguir tejidos parecidos a los humanos que puedan usarse en trasplantes. En animales se puede usar en la industria cárnica, para mejorar las carnes de consumo, así como para erradicar especies. Se han conseguido también plantas con diversas resistencias (a plagas, enfermedades..) así como mejoradas genéticamente para aumentar su consumo o mejorarlo.

Todos estos ejemplos son solo una pequeña demostración de todo lo que se puede conseguir con esta herramienta y para hacernos a la idea de todo lo que aún está por conseguir.

En los últimos años, gracias a ella, se han conseguido verdaderos progresos. En 2019, mediante la genética dirigida, se consiguió erradicar una población en cautividad del mosquito Anopheles,  vector transmisor de la malaria. Esta técnica consiste en alterar la transmisión mendeliana mediante la modificación de genes sexuales de una especie. De esta manera, se consigue una mayor y más rápida propagación de un gen de interés. Para ello se copia un gen del cromosoma sexual beneficioso de uno de los progenitores en el cromosoma sexual del otro progenitor. Así, en la población femenina de este mosquito se introdujo una mutación que produce esterilidad femenina, consiguiendo eliminar la población completa en 10 generaciones. Esta técnica no ha obtenido resultados tan exitosos en mamíferos. 

Figura 3. [Mechanism of Gene Drive]. (2017). http://blogs.plos.org/dnascience/files/2017/11/journal.pbio_.2003850.g001.png

Por supuesto, esto conlleva una serie de implicaciones éticas importantes. En el caso anteriormente expuesto, erradicar una población de una especie puede tener importantes consecuencias en el medio ambiente. Por otro lado, editar genes ofrece la posibilidad de diseñar humanos. Por tanto, todas las aplicaciones de CRISPR-Cas necesitan estar reguladas y llevar un control de seguridad y eficacia.

REFERENCIAS:




ATACANDO LA EPIGENÉTICA DEL CÁNCER: ROMIDEPSINA

Diego de León Oliva & Nicolás Martí Mencías

1. INTRODUCCIÓN

Desde que en 1971 Alfred Knudson propuso la hipótesis de que en la oncogénesis debían ocurrir mutaciones en el ADN, se ha invertido mucho esfuerzo en la investigación de la genética del cáncer. Pero igualmente importante es la epigenética de éste. Por eso, también salen al mercado medicamentos que tratan de restablecer el epigenoma normal, lo que induciría la muerte de las células malignas. Además, también pueden llevar a efectos sinergistas al combinarse con otros medicamentos. En este contexto, existen actualmente dos tipos de fármacos: los inhibidores de DNA-metiltransferasas y los inhibidores de desacetilasas de histonas (HDAC), y nosotros vamos a desarrollar un ejemplo de estos últimos: la romidepsina.

La romidepsina es un fármaco con actividad antineoplásica inhibidor de las desacetilasas de histonas (HDAC). En este post hablaremos de su naturaleza molecular, su mecanismo de acción y sus propiedades farmacológicas y clínicas. A grandes rasgos, la romidepsina es un depsipéptido bicíclico que interfiere en la expresión génica inhibiendo las HDAC de clase I y II, induciendo la detención del ciclo celular y apoptosis. Este medicamento también se conoce como FR901228 o FK228, y se comercializa como Istodax®.

La romidepsina fue aislada en 1993 como producto de fermentación de una cepa de Chromobacterium violaceum, en un programa de investigación japonés que buscaba compuestos bacterianos con propiedades antimicrobianas y antitumorales. El medicamento fue descubierto por Fujisawa Corporation y mostró grandes propiedades citotóxicas contra distintas células tumorales. La cepa se obtuvo de una muestra del suelo de la prefectura de Yamagata, en Japón (1,2). Posteriormente, el National Cancer Institute (NCI) de EEUU confirmó que era un potente anticancerígeno. Comenzaron los ensayos clínicos, y en 2009 la FDA aprobó el fármaco para el tratamiento contra el linfoma cutáneo de células T (CTCL), y en 2011 contra el linfoma periférico de células T (PTCL).

2. ESTRUCTURA

La romidepsina tiene estructura de depsipéptido bicíclico formado por la unión cíclica de cuatro aminoácidos y un ácido heptenoico con un grupo tiol, y presenta un puente disulfuro intramolecular. Un depsipéptido es aquel en el que algún enlace amida peptídico se reemplaza por un enlace tipo éster. Se encuentran mayoritariamente en productos naturales de origen marino y microbiano.

La romidepsina se compone de los aminoácidos L-Val, D-Val, Z-dehidrobutirina y D-Cys, y el ácido (3S,4E)-3-hidroxi-7-mercapto-4-heptenoico. Este ácido forma el puente disulfuro con la D-Cys y el enlace éster con la L-Val.

La estructura fue determinada usando una combinación de técnicas espectroscópicas, resonancia magnética nuclear y cristalografía por rayos X (3).

Figura 1. Estructura plana de la romidepsina. Estructura obtenida de PubChem y modificada con Chimera y Biorender

Figura 2. Modelo tridimensional de la romidepsina natural. Estructura obtenida de Drugbank. Creado con Sketchfab, clicar en la imagen para interactuar con el modelo.

3. EPIGENÉTICA

Los mecanismos epigenéticos son aquellos que regulan la expresión génica sin modificar la secuencia de bases nitrogenadas del DNA. Estos mecanismos se pueden clasificar en 3 grupos: metilación de bases, interferencia con RNA no codificante y modificaciones de la cromatina (4).

La metilación de bases consiste en la adición de un grupo metilo al carbono 5 de nucleótidos de citosina por acción de DNA metiltransferasas. Las citosinas metiladas son reconocidas por factores supresores de transcripción y se unen más difícilmente a los factores de transcripción, además de favorecer un mayor empaquetamiento y heterocromatinización del ADN; es decir, impiden la transcripción (5).

Por su parte, los RNAs no codificantes (ncRNAs)son moléculas de RNA que se transcriben de secuencias específicas de DNA pero no se traducen a proteínas y no intervienen de manera directa en su síntesis, a diferencia del mRNA, el rRNA o el tRNA. Hay varios tipos, aunque los más estudiados y relevantes son los miRNA, siRNA y lncRNA. Sus mecanismos de acción son variados, pudiendo destruir o silenciar moléculas de mRNA, favoreciendo la modificación de histonas, provocando cambios en el splicing, etc (4).

Finalmente, las modificaciones de la cromatina pueden deberse a cambios tanto en el DNA (por ejemplo, la metilación de citosinas) como en las histonas, aunque son mucho más habituales las modificaciones de este segundo tipo.

Estas modificaciones suelen tener como objetivo modificar la carga positiva que tienen las histonas, de modo que su relación con el DNA sea menos estrecha y que pueda acceder a él más fácilmente la maquinaria de transcripción, aunque hay algunos cambios que actúan a otros niveles.

Hay varios tipos de modificaciones, aunque los 3 más destacables son la metilación, la fosforilación y la acetilación de histonas, habitualmente de sus colas N-terminales. 

Por su parte, la metilación de histonas ocurre por acción de metiltransferasas de histonas específicas y no tiene un efecto único en la transcripción: puede tanto favorecer como inhibir la expresión génica. Esto es así porque las metilaciones no modifican la carga de las histonas, afectando directamente la relación entre el DNA y ellas, sino que las histonas metiladas cambian su conformación espacial, dando lugar a estructuras secundarias de la cromatina que atraen dominios proteicos específicos pertenecientes a proteínas implicadas en la transcripción (6).

Por otro lado, la fosforilación de histonas se lleva a cabo mediante la intervención de kinasas. La adición de ácidos fosfóricos aporta cargas negativas a la cola de la histona, lo que reduce su afinidad por el DNA, también cargado negativamente, y favorece la accesibilidad a la secuencia de nucleótidos por parte de la maquinaria de transcripción (6).

La acetilación y desacetilación de histonas (concretamente la desacetilación) son los procesos epigenéticos que la romidepsina tiene como dianas, y que explicaremos más en profundidad. Este proceso está regulado por dos familias de enzimas: las acetiltransferasas de histonas (HATs) y las desacetilasas de histonas (HDACs). Las HATs toman el grupo acetilo de un acetil-CoA y lo transfieren a la cadena lateral de una lisina, anulando su carga positiva y reduciendo su afinidad por el DNA.

Figura 3. Reacciones de acetilación y desacetilación de lisinas llevadas a cabo por las enzimas HAT y HDAC, respectivamente. Creado con ChemDraw.

La desacetilación de histonas está a cargo de las HDACs, que toman el grupo acetilo que se había agregado a las lisinas y lo retiran, devolviéndole a la histona su carga positiva y permitiendo una unión más fuerte con el DNA.

En cuanto a la naturaleza de las HDAC, existen un total de 18 tipos diferentes en mamíferos, los cuales se agrupan en 4 clases: I, II, III y IV. Las dianas principales de la romidepsina son la HDAC1 y la HDAC2, ambas dentro de la clase I, y también tiene cierto efecto sobre las HDAC de clase II.

Figura 4. Modelo tridimensional de HDAC1 con un grupo acetato en su centro activo (PDB: 4BKX, Chain B). Estructura modificada con Chimera y creada con Sketchfab, clicar en la imagen para interactuar con el modelo.

El centro catalítico de las HDAC clase I lo forman un catión Zn2+, tres residuos de histidina, un residuo de tirosina y dos de aspartato. La tirosina forma un puente de hidrógeno con el oxígeno del grupo acetato a eliminar, mientras que una molécula de agua se une a las histidinas y ataca el enlace entre el grupo acetilo y el grupo amino de la cadena lateral de la lisina, formándose un intermediario de reacción estabilizado por el catión Zn2+ y, finalmente, rompiéndose el enlace amida para dar lugar a una lisina por un lado y a un grupo acetato libre por el otro (4, 6).

Figura 5. Modelo tridimensional de la superficie y del Zn pocket de la HDAC1 (PDB: 4BKX, Chain B). Estructura modificada con Chimera y creada con Sketchfab, clicar en la imagen para interactuar con el modelo.

Figura 6. Mecanismo de acción de las HDAC, desacetilación del fármaco AHA por la HDAC8.  Imagen tomada de Bonomi, R., Mukhopadhyay, U., Shavrin, A., Yeh, H. H., Majhi, A., Dewage, S. W., Najjar, A., Lu, X., Cisneros, G. A., Tong, W. P., Alauddin, M. M., Liu, R. S., Mangner, T. J., Turkman, N., & Gelovani, J. G. (2015). Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain. PloS one, 10(8), e0133512.

Cabe destacar que tan solo un 2-5% del genoma se encuentra regulado por la acetilación/desacetilación de histonas, dentro del cual encontramos genes muy importantes reguladores del ciclo celular o factores de apoptosis. Es por esto por lo que se convierte las HDAC en un target farmacológico muy interesante.

4. MECANISMO DE ACCIÓN

A rasgos generales, la romidepsina es un inhibidor de HDACs, lo que favorece que aumente el número de proteínas acetiladas, incluyendo proteínas histónicas y no histónicas. Al permanecer acetiladas las histonas, se mantiene una estructura de la cromatina más laxa y activa transcripcionalmente. Además, muchas proteínas citoplásmicas y nucleares también permanecen acetiladas, aunque se desconoce cómo afecta a la célula.

La romidepsina natural es un profármaco, y al entrar en las células el glutatión (GSH) reduce el puente disulfuro, dando un péptido monocíclico con dos grupos sulfhidrilo. El sulfhidrilo unido a la cadena de cuatro carbonos es capaz de introducirse en el sitio activo y quelar el Zn2+, lo que inhibe a la enzima de manera que ya no se puede unir el sustrato (acetato de Lys en colas de histonas) (7). La figura 7 es un estudio de modelado computacional que representa la interacción del fármaco con la enzima (8).

Figura 7. Interacciones entre romidepsina y HDAC1. Imagen tomada de Oda, A., Kato, K., Morino, M., Nakayoshi, T., Fukuyoshi, S., Saijo, K., Ishioka, C., & Kurimoto, E. (2018). Prediction of the three-dimensional structures of histone deacetylase 1 complexed with Romidepsin and FK-A5. Journal of Physics: Conference Series, 1136, 012019.

Como no hemos encontrado en el Protein Data Bank ninguna HDAC acomplejada con romidepsina, hemos seleccionado con fines didácticos una en la que se inhibe por Vorinostat o SAHA, otro inhibidor de HDAC que muestra un mecanismo parecido, y también aprobado frente al CTCL.

Figura 8. Centro activo de HDAC acomplejado con SAHA: en verde se muestran los aminoácidos del centro activo y en azul el inhibidor unido al Zn2+. Estructura modificada con Chimera (PDB:1ZZ1)

Figura 9. Modelo tridimensional de un homólogo bacteriano de HDAC inhibido con SAHA (PDB: 1ZZ1). Estructura modificada con Chimera y creada con Sketchfab, clicar en la imagen para interactuar con el modelo.

Inicialmente se pensó que el grupo sulfhidrilo se unía covalentemente a una cisteína del sitio activo (Cys151 en HDAC1), pero un experimento en el que se sustituyó esta por una serina puso de manifiesto que seguía existiendo inhibición, aunque era necesaria una concentración mayor. Por tanto, sumado al hecho de que la inhibición es reversible, se piensa que esta cisteína tiene un papel regulador en la afinidad por la romidepsina (9).

La efectividad del tratamiento epigenético se cree que se debe a la hipótesis de la “vulnerabilidad epigenética de las células cancerosas”, propuesta por Dawson y Korazides (10). Esta nos dice que mientras las células normales tienen múltiples mecanismos epigenéticos, las células tumorales dependen de unos pocos, que al fallar (inhibición de HDAC por ejemplo), llevan a catástrofe celular. Se basa en la observación de que las células normales permanecen inalteradas por estos inhibidores epigenéticos, al contrario que las cancerosas. Además, en el desarrollo de tumores, muchas veces las HDACs se encuentran sobreexpresadas, inhibiendo la expresión de genes reguladores del ciclo y supresores de tumores. Por ello, son actualmente un target farmacológico en investigación para el diseño de inhibidores (HDACi), dando lugar a este nuevo tipo de quimioterapia. Por tanto, lo fundamental es conseguir restablecer la expresión de proteínas antitumorales que llevan a la célula maligna a la muerte.

La romidepsina ejerce múltiples efectos encaminados a disminuir la población tumoral: relajación de cromatina, aumento de la transcripción, interferencia con la función de chaperonas, generación de ROS (especies reactivas de oxígeno), daños en el DNA, aumento de inhibidores endógenos del ciclo celular y promover apoptosis, tanto por vía extrínseca como intrínseca.

La romidepsina consigue la detención del ciclo celular y apoptosis principalmente, pero también inhibición de angiogénesis, inducción de autofagia y diferenciación. Los mecanismos que llevan a la célula cancerosa hacia la muerte son múltiples y variados, y dependen del tipo celular y la dosis. La mayoría de estos mecanismo se desconocen a día de hoy (7, 11).

Apoptosis: se ha visto que puede estar mediada por daños en el DNA, aumento de ROS, expresión de factores proapoptóticos, disminución de factores de supervivencia, aumento de la permeabilidad de la membrana mitocondrial y por interacciones con receptores de señales de muerte. Según el tipo de cáncer aparecen unas u otras vías implicadas. Por ejemplo, en líneas de células T malignas, se ha visto in vitro la apoptosis relacionada con ROS y daño en el DNA, activación de vías de señalización de estrés SAPK/JNK (pertenecen a superfamilia de MAPK) y UPR (respuesta a proteínas desplegadas) e inhibición de las vías PI3K-AKT-mTOR y Wnt/β-cateninas, ambas relacionadas con la progresión del ciclo (12).

Detención del ciclo celular: está relacionada con la inducción de p21 y p53. p21 o CDKN1A (cyclin dependent kinase inhibitor) inhibe las ciclinas dependientes de kinasa (CDK) y defosforila la proteína de retinoblastoma, lo que detiene el ciclo en G1. Su expresión está regulada por p53, que compite con las HDAC en el promotor de p21, induciendo su expresión. Este proceso se ve favorecido gracias a la inhibición de las HDAC. Además, la acetilación de p53 prolonga su vida media, estimulando aún más el proceso (11).

En cuanto a la generación de ROS parece que se debe a la reacción de los grupos sulfhidrilos de la romidepsina con oxígeno, dando lugar al mismo puente disulfuro y anión superóxido. La romidepsina se volvería a reducir por el GSH para pasar a su forma activa e inhibir a la HDAC o volver a reaccionar con oxígeno. Por tanto, la romidepsina es un fármaco inhibidor de HDAC, pero también productor de ROS y consumidor de GSH celular. Debido a esto último, la célula tumoral se vuelve más vulnerable a los fármacos y radicales libres, en especial, aquellas que presentan quimiorresistencias mediadas por GSH. Las ROS son inductores de daño en el ADN, desnaturalización de proteínas y permeabilización de la membrana mitocondrial, lo que supone el inicio de la vía intrínseca de la apoptosis (9, 13).

Figura 10. Relación de la romidepsina con GSH y ROS. Estructura de la romidepsina obtenida de Drugbank y modificada con Chemdraw.

Figura 11. Efectos de la romidepsina. Se pueden observar algunos de los múltiples efectos del fármaco en las células tumorales. El conjunto de todas las vías activadas y desactivadas conducen a la célula hacia la detención del ciclo celular y apoptosis

5. USO CLÍNICO CONTRA LINFOMAS 

La romidepsina se puede utilizar como tratamiento para dos tipos de cánceres, el linfoma cutáneo de células T (CTCL) y el linfoma periférico de células T (PTCL). Ambos son tipos de linfoma no Hodgkin (NHL), es decir, cánceres en los que proliferan y se malignizan linfocitos, en este caso linfocitos T (14).

Los CTCLs suponen un 4% de los NHLs y se dividen en varios tipos, dentro de los cuáles los principales son la micosis fungoide (más indolente) y el síndrome de Sézary (más agresivo), ambos caracterizados porque los linfocitos T malignos se concentran en la piel, aunque en el síndrome de Sézary también es habitual encontrarlos en la sangre (15, 22). Por su parte, los PTCLs son aproximadamente 10% de NHLs, son mucho más agresivos que los CTCLs y las células T cancerosas se encuentran principalmente en órganos linfoides secundarios, como los ganglios linfáticos o el bazo (16, 23).

Linfomas T cutáneos de tipo micosis fungoide/síndrome de Sézary (incluida  parapsoriasis) - ScienceDirect

Figura 12. Piel de un paciente de micosis fungoide. Imagen tomada de Ram-Wolff, C. (2014). Linfomas T Cutáneos de Tipo micosis fungoide/Síndrome de Sézary (incluida parapsoriasis). EMC – Dermatología, 48(2), 1–12. https://doi.org/10.1016/s1761-2896(14)67581-6

En 2009, la FDA (la Administración de Medicamentos y Alimentos de EEUU) aprobó el uso de la romidepsina como tratamiento para pacientes de CTCL y en 2011 para pacientes de PTCL que ya hayan recibido al menos una terapia previa. Sin embargo, hay estudios recientes que cuestionan su eficacia como tratamiento para los PCTLs, llevando a algunas compañías farmacéuticas a dejar de indicarla como tratamiento para estos cánceres (17).

Se administra de manera intravenosa, idealmente perfundiendo durante 4 horas una dosis total de 14mg/m2 los días 1, 8 y 15 de un ciclo de 28 días. Tras el final de cada ciclo se inicia uno nuevo, pudiendo modificarse la cantidad de dosis o los días de administración dependiendo de la respuesta del paciente al tratamiento. La romidepsina es transportada por la sangre unida a proteínas hasta llegar a sus tejidos diana, hasta que finalmente es metabolizada a nivel hepático por enzimas de la familia citocromo P450 (14, 24).

En cuanto a los efectos secundarios, puede producir algunos leves, como náuseas o vómitos, y otros algo más graves, como linfopenia, anemia o trombocitopenia, que pueden llegar a afectar hasta al 40% de los tratados (14, 24).

6. OTRAS APLICACIONES

Aparte de su eficacia contra los CTCLs y PTCLs, la romidepsina también parece tener cierta actividad antineoplásica en otros cánceres, aunque su uso clínico no está todavía aprobado. Algunos de los cánceres que parece que responderían a un tratamiento con romidepsina serían el cáncer de pulmón de células no pequeñas al combinarse con bortezomib (inhibidor del proteosoma 26S) (18), el cáncer de mama inflamatorio al combinarse con paclitaxel (inhibidor de polimerización de microtúbulos) (19) y ciertos tipos de cáncer de ovario al combinarse con inhibidores de las ciclooxigenasas, como la aspirina (20). Parece que las posibilidades de la romidepsina con otros fármacos son infinitas.

Por otro lado, también se tiene en cuenta a la romidepsina como un posible tratamiento contra el SIDA. Esto se debe a que la romidepsina es un agente reversor de la latencia, por lo que activa a los virus que estaban en estado latente, ocultos dentro de los linfocitos, y los expone a tratamientos antivirales o al sistema inmunitario, que debe haber sido previamente estimulado con una vacuna (21).

Para finalizar, nos gustaría lanzar una pregunta: ¿por qué la romidepsina es más eficaz en cánceres de sangre que en tumores sólidos? ¿Cuál es la diferencia fundamental para que uno sea mucho más susceptible que el otro a las modificaciones epigenéticas? La complejidad genética de los tumores sólidos o el medio en el que se encuentran expuestos al fármaco son algunas diferencias que podrían influir, pero aún se desconoce mucho de esta terapia. Por eso, “further research is needed!”.

BIBILIOGRAFÍA

  1. Ueda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T., & Okuhara, M. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. The Journal of antibiotics47(3), 301–310. https://doi.org/10.7164/antibiotics.47.301
  2. Ueda, H., Manda, T., Matsumoto, S., Mukumoto, S., Nishigaki, F., Kawamura, I., & Shimomura, K. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. The Journal of antibiotics47(3), 315–323. https://doi.org/10.7164/antibiotics.47.315
  3. Shigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K., & Tada, T. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. The Journal of antibiotics47(3), 311–314. https://doi.org/10.7164/antibiotics.47.311
  4. Al Aboud, N. M., Tupper, C., & Jialal, I. (2021). Genetics, Epigenetic Mechanism. In StatPearls. StatPearls Publishing.
  5. Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology38(1), 23–38. https://doi.org/10.1038/npp.2012.112
  6. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell research, 21(3), 381–395. https://doi.org/10.1038/cr.2011.22
  7. VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. The Journal of antibiotics64(8), 525–531. https://doi.org/10.1038/ja.2011.35
  8. Oda, A., Kato, K., Morino, M., Nakayoshi, T., Fukuyoshi, S., Saijo, K., Ishioka, C., & Kurimoto, E. (2018). Prediction of the three-dimensional structures of histone deacetylase 1 complexed with Romidepsin and FK-A5. Journal of Physics: Conference Series, 1136, 012019. https://doi.org/10.1088/1742-6596/1136/1/012019
  9. Furumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M., & Horinouchi, S. (2002). FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer research62(17), 4916–4921.
  10. Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell150(1), 12–27. https://doi.org/10.1016/j.cell.2012.06.013
  11. Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone Deacetylase Inhibitors as Anticancer Drugs. International journal of molecular sciences18(7), 1414. https://doi.org/10.3390/ijms18071414
  12. Valdez, B. C., Brammer, J. E., Li, Y., Murray, D., Liu, Y., Hosing, C., Nieto, Y., Champlin, R. E., & Andersson, B. S. (2015). Romidepsin targets multiple survival signaling pathways in malignant T cells. Blood cancer journal5(10), e357. https://doi.org/10.1038/bcj.2015.83
  13. Mizutani, H., Hiraku, Y., Tada-Oikawa, S., Murata, M., Ikemura, K., Iwamoto, T., Kagawa, Y., Okuda, M., & Kawanishi, S. (2010). Romidepsin (FK228), a potent histone deacetylase inhibitor, induces apoptosis through the generation of hydrogen peroxide. Cancer science101(10), 2214–2219. https://doi.org/10.1111/j.1349-7006.2010.01645.x
  14. Yang L. P. (2011). Romidepsin: in the treatment of T-cell lymphoma. Drugs, 71(11), 1469–1480. https://doi.org/10.2165/11207170-000000000-00000
  15. Bagherani, N., & Smoller, B. R. (2016). An overview of cutaneous T cell lymphomas. F1000Research, 5, F1000 Faculty Rev-1882. https://doi.org/10.12688/f1000research.8829.1
  16. Xie, C., Li, X., Zeng, H., & Qian, W. (2020). Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma. Experimental hematology & oncology9(1), 30. https://doi.org/10.1186/s40164-020-00188-w
  17. Bachy, E., Camus, V., Thieblemont, C., Sibon, D., Casasnovas, R. O., Ysebaert, L., Damaj, G., Guidez, S., Pica, G. M., Kim, W. S., Lim, S. T., André, M., García-Sancho, A. M., Penarrubia, M. J., Staber, P. B., Trotman, J., Hüttmann, A., Stefoni, V., Re, A., Gaulard, P., … Delarue, R. (2021). Romidepsin Plus CHOP Versus CHOP in Patients With Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA). Journal of clinical oncology : official journal of the American Society of Clinical Oncology, JCO2101815. Advance online publication. https://doi.org/10.1200/JCO.21.01815
  18. Schrump, D. S., Fischette, M. R., Nguyen, D. M., Zhao, M., Li, X., Kunst, T. F., Hancox, A., Hong, J. A., Chen, G. A., Kruchin, E., Wright, J. J., Rosing, D. R., Sparreboom, A., Figg, W. D., & Steinberg, S. M. (2008). Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clinical cancer research : an official journal of the American Association for Cancer Research14(1), 188–198. https://doi.org/10.1158/1078-0432.CCR-07-0135
  19. Robertson, F. M., Chu, K., Boley, K. M., Ye, Z., Liu, H., Wright, M. C., Moraes, R., Zhang, X., Green, T. L., Barsky, S. H., Heise, C., & Cristofanilli, M. (2013). The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. Journal of experimental therapeutics & oncology10(3), 219–233.
  20. Son, D. S., Wilson, A. J., Parl, A. K., & Khabele, D. (2010). The effects of the histone deacetylase inhibitor romidepsin (FK228) are enhanced by aspirin (ASA) in COX-1 positive ovarian cancer cells through augmentation of p21. Cancer biology & therapy9(11), 928–935. https://doi.org/10.4161/cbt.9.11.11873
  21. Mothe, B., Rosás-Umbert, M., Coll, P., Manzardo, C., Puertas, M. C., Morón-López, S., Llano, A., Miranda, C., Cedeño, S., López, M., Alarcón-Soto, Y., Melis, G. G., Langohr, K., Barriocanal, A. M., Toro, J., Ruiz, I., Rovira, C., Carrillo, A., Meulbroek, M., Crook, A., … BCN02 Study Investigators (2020). HIVconsv Vaccines and Romidepsin in Early-Treated HIV-1-Infected Individuals: Safety, Immunogenicity and Effect on the Viral Reservoir (Study BCN02). Frontiers in immunology11, 823. https://doi.org/10.3389/fimmu.2020.00823
  22. https://es.oncolink.org/tipos-de-cancer/linfomas/linfoma-cutaneo-de-celulas-t/all-about-cutaneous-t-cell-lymphoma-ctcl
  23. https://lymphoma.org/aboutlymphoma/nhl/ptcl/
  24. https://packageinserts.bms.com/pi/pi_istodax.pdf
  25. https://go.drugbank.com/drugs/DB06176
  26. https://pubchem.ncbi.nlm.nih.gov/compound/5352062



PLITIDEPSINA, DEL MAR A LA MEDICINA

Ángela Aparicio Valencia e Inés Cristóbal Díaz; Universidad de Alcalá de Henares

La Plitidepsina es un principio activo con propiedades antitumorales, antivirales e inmunosupresoras de origen marino, aislada de la ascida Aplidium albicans, un invertebrado primitivo (1). Es comercializada por la empresa española PharmaMar S.A. bajo el nombre de Aplidin, el cual está siendo probado en varios ensayos clínicos. Es un compuesto de didemnina de segunda generación que pertenece a fármacos derivados de productos oceánicos naturales (2).

Figura 1. Aplidin. ¿Qué es la Plitidepsina? Antiviral de PharmaMar contra la Covid reduce casi al completo la carga viral. [cited 2022 Jan 6]. Available from: https://www.heraldo.es/noticias/salud/2021/01/26/un-antiviral-fabricado-en-espana-contra-la-covid-reduce-casi-al-completo-la-carga-viral-1416800.html

Se trata de un péptido citotóxico que aunque en la actualidad se sintetiza en el laboratorio, se aisló inicialmente de un organismo marino, de la ascidia Aplidium albicans, un pequeño animal filtrador que puede encontrarse en una de las bahías de las Islas Baleares. Este organismo puede localizarse en diferentes lugares del mundo, pero se piensa que tiene su origen en el mar Caribe y que pudo llegar al mar Mediterráneo pegado a los barcos que surcaban los mares de América a Europa.

La Plitidepsina ha surgido recientemente como nuevo candidato para el tratamiento terapéutico del SARS-CoV-2. Este fármaco ha mostrado resultados prometedores en pacientes hospitalizados con COVID-19 en cuanto a una reducción de la carga viral y una resolución clínica. Sus propiedades antivirales y antitumorales se deben a su actuación sobre el eEF1A, al cual inhibe y con ello impide la traducción de proteínas virales y tumorales (3).  

Actualmente el fármaco se encuentra en fase de investigación para el tratamiento de tumores, ya que a día de hoy el uso de la Plitidepsina no está autorizado en Europa. Así la EMA y la FDA lo han categorizado como fármaco huérfano, por lo que la empresa está recurriendo a Bruselas para que sea cambiado de categoría.

Figura 2. Aplidium albicans: El animal marino que proporcionaría un fármaco (Plitidepsina) contra el coronavirus [Internet]. [cited 2022 Jan 6]. Available from:https://www.rafer.es/innovacion-laboratorio-clinico/aplidium-albicans-el-animal-marino-que-proporcionaria-un-farmaco-plitidepsina-contra-el-coronavirus/

ESTRUCTURA PLITIDEPSINA

La Plitidepsina químicamente es un depsipéptido cíclico, también conocida como dehidrodidemnina B y es comercializada por la empresa biotecnológica PharmaMar S.A. con el nombre de Aplidin. La dehidrodidemnina B es una clase de didemnina, un grupo de compuestos depsipeptídicos cíclicos aislados de tunicados del género Trididemnum. Así la Plitidepsina está formada por un péptido cíclico, en el que encontramos uno o varios enlaces éster en vez de enlaces peptídicos. Su estructura química es bastante similar a la de la didemnina B, salvo porque la Plitidepsina posee un piruvato en vez de un lactato en la posición N-terminal (1). Su fórmula molecular es C57H87N7O15 y tiene un peso molecular de 1.110,34 (2). 

Figura 3. Estructura molecular de la Plitidepsina. Creado con Chimera.

MECANISMO DE ACCIÓN

En este apartado vamos a describir diferentes mecanismos de acción de la Plitidepsina. Estos mecanismos hacen que el fármaco sea activo frente a la infección por el SARS-CoV-2, y suponen un nuevo tratamiento anticancerígeno.

PLITIDEPSINA Y SARS-CoV-2

Los coronavirus pertenecen a la familia Coronaviridae dentro de la cual encontramos cuatro géneros distintos: Alphacoronavirus, Betacoronavirus, Gammacoronavirus y Deltacoronavirus. El SARS-CoV-2 pertenece al género Betacoronavirus, este es un virus esférico con envoltura que contiene un RNA monocatenario de entre 26-32 kB de polaridad positiva. Este virus infecta aquellas células que presentan en su membrana el receptor ACE-2, el cual se encuentra principalmente en las células pulmonares, por lo que en términos generales ocasiona una infección respiratoria. (4)

Para entender los efectos de la Plitidepsina sobre el SARS-CoV-2 es fundamental conocer los elementos que conforman el genoma de este virus. Su genoma está formado por diferentes marcos abiertos de lectura (ORF), los de mayor tamaño son el ORF1A y ORF1B que codifican para dos poliproteínas denominadas respectivamente como pp1a y pp1b, estos constituyen dos tercios del genoma del virus. Estas poliproteínas son posteriormente escindidas generando 16 proteínas no estructurales (nsps) que forman el complejo de replicación y transcripción viral, entre las enzimas que pertenecen a este complejo encontramos la RNA polimerasa RNA dependiente. A partir del tercio restante del genoma se sintetizan distintos RNA subgenómicos que codifican para proteínas estructurales como la proteína S (Spike), la proteína E (envoltura), la proteína M (membrana) y la proteína N (nucleocápside). Estas proteínas estructurales son esenciales para la entrada del virus en las células y para el ensamblaje de las nuevas partículas víricas. (5)

Figura 4.
Genoma SARS-CoV-2. Centro de Coordinación de Alertas y Emergencias Sanitarias. Aportaciones de esta actualización INFORMACIÓN CIENTÍFICA-TÉCNICA Información microbiológica acerca de SARS-CoV-2. 2021.

MECANISMO DE REPLICACIÓN E INVASIÓN

El ciclo replicativo del SARS-CoV-2 se inicia cuando la proteína S se une al receptor de sus células diana (ACE-2, principalmente las de los pulmones), así la envoltura del virus y la membrana de la célula se fusionan lo que permite la entrada en la célula del RNA monocatenario del SARS-CoV-2. Una vez dentro, se produce la traducción de los dos grandes marcos de lectura del virus, ORF1A y ORF1B que originan las poliproteínas pp1a y pp1b. Estas a su vez se escinden en distintas proteínas no estructurales gracias a la acción de proteasas virales. Estas proteínas tienen la capacidad de formar vesículas de doble membrana a partir del RER donde tiene lugar la replicación viral. Aquí la RNA pol RNA dependiente a partir del RNA del virus (+) origina copias de RNA de polaridad negativa, las cuales son utilizadas para producir los RNA (+) que formarán parte de los nuevos virus. Además gracias a las moléculas de RNA (-) se produce la transcripción de los RNA subgenómicos, estos darán lugar a las proteínas estructurales. Una vez sintetizadas, las vesículas con las diferentes proteínas y los genomas virales pasan al golgi donde se empaquetan para formar los nuevos virus. Por último, las vesículas son liberadas fuera de la célula por un proceso de exocitosis. (6)

Cabe destacar que los coronavirus poseen una exonucleasa (actividad proofreading) que les permite evitar la acumulación de mutaciones, por lo que poseen genomas más grandes que otros virus de RNA.

ACCIÓN ANTIVIRAL DE LA PLITIDEPSINA

El papel antiviral de la Plitidepsina reside en que es un potente inhibidor del factor de elongación 1α (eEF1α) de las células eucariotas. Este factor proteico participa en la traducción de las células eucariotas, más específicamente en la fase de elongación de la cadena polipeptídica. Su función es transferir los aminoacil-tRNAs al sitio A del ribosoma para así incorporar los aminoácidos correspondientes a la cadena polipeptídica. De esta manera los compuestos que inhiben al eEF1α son capaces de suprimir la síntesis de nuevas proteínas.

El eEF1α es utilizado por el SARS-CoV-2 para la traducción del RNA viral de cadena positiva y así poder sintetizar las distintas poliproteínas, además de que también es fundamental para la síntesis de las proteínas estructurales. En consecuencia la Plitidepsina inhibe la traducción de los ORF1A y ORF1B, lo que conduce a una disminución en la producción de poliproteínas y por lo tanto una menor producción de proteínas replicativas no estructurales como la RNA pol RNA dep, esencial para la síntesis de los genomas de los nuevos virus. Por este mecanismo la Plitidepsina también inhibe la traducción de los RNA subgenómicos y por lo tanto la síntesis de las proteínas estructurales, por lo que impide el ensamblaje de los nuevos virus y la replicación de estos. (1) (7)

Así sabemos que este nuevo fármaco no actuaría directamente sobre el virus sino que le impediría completar su ciclo replicativo y en consecuencia la síntesis de nuevas partículas víricas.

Figura 5. Mecanismo de acción de la Plitidepsina contra el SARS-CoV-2. Creado en BioRender.

PLITIDEPSINA Y CÁNCER

La Plitidepsina constituye un agente antitumoral que actualmente se encuentra en fase de estudio. Este fármaco posee numerosas dianas que pueden tener efectos anticancerígenos diversos, en este trabajo vamos a comentar algunos de ellos.

RUTA JNK

La ruta JNK o C-Jun NH2-terminal kinasas son un subgrupo de proteínas activadas por mitógenos (MAP Kinasas). Estas proteínas participan en vías de transducción de la señal que regulan la proliferación celular mediante la transcripción y regulación de distintos genes, además de que también desempeñan un papel fundamental en las vías apoptóticas. Una de las principales dianas de esta vía es el factor de transcripción c-Jun, de manera que JNK fosforila a c-Jun en dos residuos de serina activándolo y aumentando su actividad transcripcional. Este factor de transcripción controla la proliferación y apoptosis gracias a su capacidad de regular la expresión y función de moléculas reguladoras del ciclo celular como las ciclinas o p53. (8)

La ruta JNK se ve activada por múltiples estímulos como el estrés físico o las citoquinas a través de las MAP kinasas. Estudios recientes han demostrado que JNK también participa en algunas formas de muerte celular como la necrosis, estimulada por el Factor de Necrosis Tumoral (TNF) y promoviendo la producción de especies reactivas de oxígeno. (8)

Así la Plitidepsina es capaz de detener el ciclo celular e inducir la apoptosis gracias a la activación sostenida de la ruta JNK, junto con la inducción de estrés oxidativo por la alteración de la homeostasis del glutatión y la activación de la GTPasa Rac1 (oncogén). Todo ello finalmente conduce a la apoptosis dependiente de caspasas. En cuanto a esto, diferentes estudios han demostrado que la Plitidepsina induce la apoptosis en células de tumores sólidos por la activación sostenida de la ruta JNK. (9) (10)

PROPIEDADES ANTIANGIOGÉNICAS

Otro aspecto importante de la Plitidepsina con respecto a su papel antitumoral es que posee propiedades antiangiogénicas, puesto que se encarga de inhibir la expresión de genes que estimulan la angiogénesis, como el Factor de Crecimiento Endotelial Vascular (VEGF). Por otro lado, la Plitidepsina también es capaz de inhibir la respuesta de las células endoteliales frente a estímulos angiogénicos, por lo que se inhibe la síntesis y proliferación de nuevos vasos sanguíneos, haciendo que los tumores tengan menor aporte de oxígeno y nutrientes. (11) (12) (2)

MICROAMBIENTE TUMORAL Y CICLO CELULAR

La Plitidepsina es capaz de modificar el microambiente tumoral de manera que inhibe la proliferación del tumor y por lo tanto hace que disminuya la división de las células cancerígenas. (9)

En cuanto a su efecto antiproliferativo debemos comentar que este fármaco provoca la detención del ciclo celular en G1 y en G2/M, este fenómeno se ha visualizado principalmente en células leucémicas. Se ha comprobado que a concentraciones bajas la Plitidepsina inhibe la proliferación al detener el ciclo celular en G1 y G2/M y a concentraciones altas induce la apoptosis. (11)

También cabe destacar que la Plitidepsina puede unirse al factor de elongación 1α (eEF1α) de células eucariotas inhibiéndolo, por lo que también sería capaz de alterar la síntesis proteica en células tumorales.

Figura 6. Esquema del mecanismo de acción de la Plitidepsina frente al cáncer. Creado con GitMind.

ACTUALIDAD

Hemos explicado los diferentes mecanismos de acción de la Plitidepsina frente al SARS-CoV-2 y el cáncer, uno de los más importantes se basa en la inhibición de eEF1α. Este factor de elongación pertenece a la maquinaria de traducción de las células eucariotas, por lo que es fundamental preguntarse qué efecto podría tener su inhibición en las células sanas del paciente. Muchos estudios han analizado los efectos adversos de la Plitidepsina sobre las células eucariotas, ya que casi todos los inhibidores de la traducción en estas células suelen ser citotóxicos en los ensayos realizados con células de mamíferos.

Los estudios de la citotoxicidad de la Plitidepsina demuestran un impacto citostático más que citotóxico en la proliferación celular, además de que también se ha observado que el SARS-CoV-2 se muestra más susceptible a la acción del fármaco que la célula huésped que lo contiene (1). Para confirmar estos resultados será necesario realizar más estudios y perfeccionar el fármaco para evaluar que este es seguro.

En cuanto a la acción de la Plitidepsina contra el SARS-CoV-2 se ha demostrado que su efecto antiviral es mucho más potente que el del fármaco Remdesivir. Así se ha observado que el fármaco reduce significativamente la carga viral después de 24 horas desde su aplicación, y es capaz de disminuir la expresión de los RNAs subgenómicos tan solo 4 horas después. (1)

Actualmente este fármaco se encuentra en periodo de estudio, pero en Australia sí está autorizado para pacientes con mieloma múltiple refractario (7). La Plitidepsina supone un medicamento muy prometedor contra el SARS-CoV-2 en pacientes graves, pero para ello es necesario realizar más ensayos y conocer su eficacia contra las distintas variantes del virus, así como los efectos secundarios sobre el paciente.

BIBLIOGRAFÍA

1. Reina J. Plitidepsin, an inhibitor of the cell elongation factor eEF1a, and molnupiravir an analogue of the ribonucleoside cytidine, two new chemical compounds with intense activity against SARS-CoV-2. Rev Española Quimioter. 2021;34(5):402–7.

2. Candel FJ, Peñuelas M. Delafloxacin: Design, development and potential place in therapy. Drug Des Devel Ther. 2017;11:881–91.

3. White KM, Rosales R, Yildiz S, Kehrer T, Miorin L, Moreno E, et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science (80- ). 2021;371(6532):926–31.

4. Centro de Coordinación de Alertas y Emergencias Sanitarias. Aportaciones de esta actualización INFORMACIÓN CIENTÍFICA-TÉCNICA Información microbiológica acerca de SARS-CoV-2. 2021; Available from: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/20210621_MICROBIOLOGIA.pdf

5. Ezpeleta D, García Azorín D. Manual COVID-19 para el neurólogo general [Internet]. Sociedad Española de Neurología. 2020. 12–16 p. Available from: https://www.mendeley.com/catalogue/3d265ec7-03ae-325c-83d1-

6. Fernández-Camargo DA, Morales-Buenrostro  Luis Eduardo. Biología del SARS-CoV-2. Rev Mex Traspl. 2020;9(S2):139–48.

7. Papapanou M, Papoutsi E, Giannakas T, Katsaounou P. Plitidepsin: Mechanisms and clinical profile of a promising antiviral agent against covid-19. J Pers Med. 2021;11(7).

8. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol. 2007;19(2):142–9.

9. Cáncer TDEL. Bioactivos marinos en el tratamiento del cáncer. Rev electron. 2015;40(7).

10. González-Santiago L, Suárez Y, Zarich N, Muñoz-Alonso MJ, Cuadrado A, Martínez T, et al. Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ. 2006;13(11):1968–81.

11. Muñoz-Alonso MJ, González-Santiago L, Zarich N, Martínez T, Alvarez E, Rojas JM, et al. Plitidepsin has a dual effect inhibiting cell cycle and inducing apoptosis via Rac1/c-Jun NH2-terminal kinase activation in human melanoma cells. J Pharmacol Exp Ther. 2008;324(3):1093–101.

12. Nalda-Molina R, Valenzuela B, Ramon-Lopez A, Miguel-Lillo B, Soto-Matos A, Perez-Ruixo JJ. Population pharmacokinetics meta-analysis of plitidepsin (Aplidin ®) in cancer subjects. Cancer Chemother Pharmacol. 2009;64(1):97–108.




Tomar café acorta nuestra vida… ¿o no?

por Lucía Dueñas Prieto & Edurne Gómez Maroto, estudiantes de 3º Biología Sanitaria (Universidad de Alcalá, UAH)


Sabemos que nuestro estilo de vida y hábitos influyen en la salud y en el funcionamiento de nuestro organismo. Durante años, el consumo de café ha estado ligado a efectos negativos sobre la salud y al envejecimiento debido, principalmente, al acortamiento de los telómeros, pero… ¿Cómo afecta realmente el consumo de café a nivel molecular? ¿Es esta idea totalmente cierta?

Este artículo se centrará en el estudio del café y en aclarar su modo de acción sobre los telómeros en relación al envejecimiento molecular.


1. IMPORTANCIA DEL TELÓMERO:

La longitud de los telómeros es un biomarcador tanto del pasado replicativo como del potencial replicativo de las células. Cada vez hay más pruebas que apoyan la idea de que los telómeros desempeñan un papel importante en la senescencia, puesto que se ha demostrado que aquellos individuos con telómeros más cortos tienen un mayor riesgo de muerte prematura en comparación con aquellos con telómeros más largos. La longitud de los telómeros es predictiva de los años de vida sana.

1.1. ¿QUÉ SON LOS TELÓMEROS?

Los telómeros son los extremos de los cromosomas, los cuales van a resultar fundamentales para que los distintos cromosomas no se unan entre sí. Se caracterizan por ser regiones de DNA no codificante y altamente repetitivas. Son estructuras que van a dar estabilidad estructural a los cromosomas, y en la división celular. Las repeticiones teloméricas permiten que no se pierda esta información. 

Imagen 1. Situación de los telómeros y repeticiones teloméricas. Imagen realizada en Biorender. (https://app.biorender.com/).

Los eucariotas presentan una característica diferente respecto a los procariotas, y es que tienen un final abierto, por lo que hay un problema: el acortamiento telomérico. Este consiste en que cada replicación se va acortando la secuencia del final, lo que nos lleva a la secuencia de Hayflick, que es el número limitado de replicaciones que puede tener la línea de una célula; en humanos es de hasta 40-60 replicaciones.

1.2. ESTRUCTURA DE LOS TELÓMEROS: G-CUADRUPLEXOS.

Los G-cuadruplexos son un tipo estructural de DNA. Su estructura se basa en 3 bases (XXX) + 3 G (GGG) + 3 bases (XXX). Estas estructuras rompen su estructura de DNA B, la molécula se abre y se unen las guaninas entre ellas formando pares de Hoogsteen, que es la estructura más estable entre guaninas. Se trata de 3 planos de una tétrada de guaninas que se estabilizan con un catéter metálico (normalmente es K+ y a veces Na+). Hablamos de G-tétradas, debido a que se produce una asociación de cuatro guaninas emparejadas a través de enlaces de hidrógeno de Hoogsteen, que se apilan verticalmente.

Los G-cuadruplexos son fundamentales en el funcionamiento del telómero, pues protegen la terminación de los genes de la acción de nucleasas.

Imagen 2. Estructura normal de los G-cuadruplexos. Esquema obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

1.3. REPLICACIÓN DE LOS TELÓMEROS.

Vamos a explicar brevemente la replicación de los telómeros, para entender el papel de algunas proteínas que se mencionarán en el artículo. Hay dos proteínas en los telómeros:

  • La shelterina, la cual se une en la secuencia telomérica y fomentan el plegamiento de esta secuencia (T-loop), anudan el extremo del telómero y protege la secuencia de la acción de las nucleasas.
  • La telomerasa, enzima polimerasa reversa, pues tiene un complejo de RNA y proteína, es decir, tiene su propia secuencia de RNA. Sintetiza DNA a partir de un molde de RNA, lo que forma el complejo de TERT. La telomerasa es una enzima altamente regulada para que la longitud de los telómeros se mantenga más o menos constante.  

Para que comience la elongación de los telómeros es necesario abrir los G-cuadruplexos para que actúe la maquinaria enzimática de la replicación. Una vez que están abiertos, la telomerasa se encarga de sintetizar DNA. Cuando se termina de sintetizar todo el telómero, cesa su función y se retira. A continuación, el complejo CST recluta la DNA pol α y primasa, que sintetiza el cebador, y continúa la DNA pol δ. Cuando termina, actúa una ligasa para poder unir . De esta manera, se alarga el telómero.

Otras enzimas importantes que participan en el proceso de replicación del telómero son:

  • RTLE1: es una proteína helicasa que abre los G-cuadruplexos, es fundamental para el mantenimiento de la estructura del telómero, pues tiene una actividad antirrecombinasa. Cuando el DNA tiene un extremo libre, con un overhang (como ocurriría con el telómero si no estuviese cerrado), es el momento en el que se activan las señales de reparación del DNA: recombinación homóloga, no homóloga y por medio de transposones (o retro).
  • Mec1 y Tel1. Tel1 es fundamental para reclutar la telomerasa, con la ayuda de Mec1. Además, se encargan de coordinar la respuesta al daño en el DNA mediante la fosforilación de proteínas implicadas en la reparación del DNA y vías de control. Así estas dos proteínas pueden actuar cuando el DNA esta expuesto a agentes oxidantes. (1)

2. CONEXIÓN ENTRE ESTRÉS OXIDATIVO Y ACORTAMIENTO TELOMÉRICO:

2.1 CONCEPTOS EN RELACIÓN AL DAÑO OXIDATIVO.

A continuación vamos a definir algunos conceptos en relación al daño oxidativo:

  • Radicales libres. Es una especie química que va a ser altamente reactiva, con capacidad oxidativa, debido a que presentan uno o más electrones desapareados, y tienden a captar un electrón de moléculas estables. Los radicales libres se forman como productos intermedios en reacciones químicas, por lo que como estas reacciones tienen lugar constantemente en el cuerpo, va a haber unas especies químicas para protegernos de los radicales libres, esta es la función de los antioxidantes.
  • Antioxidante. Los antioxidantes son nutrientes que “retardan o previenen la oxidación de otras moléculas”.  El modo de acción de los antioxidantes es “romper” y terminar la reacción de oxidación-reducción, eliminando intermediarios del radical libre o inhibiendo otras reacciones de oxidación. De esta manera, son capaces de disminuir el efecto perjudicial que originan los radicales libres. Estas moléculas, de diferente origen y estructura, se pueden encontrar en una gran variedad de alimentos como vegetales, frutas, vino tinto, chocolate, aceites, y café.
  • Estrés oxidativo. El estrés oxidativo es una patología celular debida al aumento de la actividad oxidativa en el interior celular, como consecuencia de que las sustancias antioxidantes no son suficientes para combatir la cantidad de radicales libres en sangre. Origina cambios estructurales y funcionales en estas, provocando así envejecimiento celular y con ello una futura apoptosis; por lo tanto causa deterioro tisular y desarrollo de patologías. También, como veremos en este artículo, provoca daños en el DNA, afectando a los telómeros.
  • Especies reactivas del oxígeno (ROS). Estas especies van a ser formadas de forma exógena y endógena, desde propios hábitos (fumar, inhalar humo del tabaco, consumo de alcohol y otras drogas, y consumir pocos antioxidantes, o gastarlos muy deprisa debido al metabolismo), que podríamos evitar, hasta el propio el ambiente en el que nos encontramos (radiación, luz solar y radiación UV, y contaminación del aire).

Estar expuestos a alguno de los elementos mencionados anteriormente, van a dar lugar especies reactivas del oxígeno (ROS), moléculas altamente reactivas debido a la presencia de una capa de electrones de valencia desapareada. Son moléculas inestables que contienen oxígeno y que reaccionan fácilmente con otras moléculas en la célula. Los ROS incluyen anión superóxido, peróxido de hidrógeno, radical hidroxilo y especies reactivas del nitrógeno, los cuales tienen que ser combatidos por antioxidantes. Estas especies se producen en la mitocondria durante procesos oxidativos del metabolismo.

Si alcanzamos una situación de estrés oxidativo, y hay sobreproducción de ROS, esto va a conllevar a un deterioro de los componentes celulares (ácidos nucleicos, proteínas y lípidos). Centrándonos en los ácidos nucleicos, pueden causar lesiones de bases, roturas en el DNA, entrecruzamientos entre cadenas…

2.2. ACORTAMIENTO DEL TELÓMERO EN RELACIÓN AL ESTRÉS OXIDATIVO.

Sabemos que los telómeros están en los extremos de los cromosomas, y son ricos en guanina, así que adopta estructuras del tipo G-cuadruplexo, dificultando la actuación de la telomerasa, debido a que hay que abrirlas para que se pueda llevar a cabo la elongación de los telómeros. (2)

Sin embargo, la guanina es la nucleobase más propensa a la oxidación (ya podemos ir deduciendo cúal es el problema). Como los G-cuadruplexos son estructuras ricas en guanina esta será una estructura que responde al estrés oxidativo, porque las guaninas provocarán daño oxidativo en el DNA, dando lugar a lesiones que provocan mutaciones y problemas en la replicación, traducción y transcripción del DNA. (2)

El por qué de la guanina es la nucleobase más propensa a la oxidación, se debe a que tiene un bajo potencial redox. Como resultado de la oxidación se forma  8-oxo-7,8-dihidroguanina, y el problema reside en que ahora esta guanina oxidada aparea con una adenina, en lugar de con una citosina como ocurre en situaciones normales, lo que conlleva a una mutación si no es reparada por los sistemas moleculares. Así, las ROS pueden ocasionar modificaciones en las guaninas, las cuales pueden afectar a la estructura de los G-cuadruplexos al reducir la estabilidad térmica de sus motivos, afectando a la unión de proteínas a la estructura. (2)

Vemos a continuación la estructura de la guanina y de la guanina oxidada:

Imagen 3. Oxidación de la guanina a 8-oxo-guanina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Ahora observamos cómo sería el apareamiento normal de la guanina con una citosina:

Imagen 4. Apareamiento normal, guanina con citosina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Aquí observamos el apareamiento que tiene lugar entre la guanina oxidada con una adenina:

Imagen 5. Apareamiento entre guanina y adenina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Vemos que el enlace entre la guanina – citosina, es un triple enlace, mucho más fuerte y estable que el que se forma entre la 8-oxo-guanina – adenina, el cual es un doble enlace, así entre G-C hay un emparejamiento de bases de Watson y Crick, y en el caso de 8-oxo-G – A hay un emparejamiento de bases de Hoogsteen. Esto supone que la ausencia de un tercer enlace de hidrógeno en el emparejamiento de Hoogsteen indica menor estabilidad, como ya hemos comentado, lo que conduce a la obstrucción de la formación de la tétrada de los G-cuadruplexos. (2) 

Vemos cómo sería la tétrada de G-cuadruplexos con guanina:

Imagen 6. Estructura G-cuadruplexos. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Y así es cómo se ve alterada la estructura de los G-cuadruplexos si la guanina se oxida, estructura que se encuentra en un estado casi desplegado:

Imagen 7. Alteración G-cuadruplexos. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Varios grupos de investigación han estudiado este suceso, observando que se llega a oxidar hasta un 50% de la guanina en los G-cuadruplexos, pues es una estructura susceptible al estrés oxidativo. (2)

Lo que ocurre es que esta estructura de G-cuadruplexos se forma en los extremos de los cromosomas para protegerlos de la acción de las nucleasas, porque son extremos libres. Si en presencia de ROS los G-cuadruplexos se despliegan, y no es reparado, estos extremos van a estar expuestos a las nucleasas. Un nivel elevado de 8-oxo-guanina dificulta la actividad de la telomerasa, lo que va a producir un acortamiento de los telómeros, la función y su mantenimiento. (2)

El acortamiento de los telómeros va a producir senescencia prematura. Estudios han demostrado que la pérdida de los telómeros afecta a muchos procesos celulares, produciendo apoptosis, envejecimiento, carcinogénesis e inestabilidad cromosómica. Si esto no se repara, se producen roturas en el DNA y aparición de mutaciones puesto que ha habido un apareamiento 8-oxo-G – A que supone ante una posible futura replicación la aparición de un apareamiento A – T, cambiando completamente la base inicial. (2)

Hay estudios con fibroblastos humanos normales en los que por la incorporación de ROS, se aceleró el acortamiento de los telómeros en la replicación, lo que supuso roturas teloméricas de una sola hebra debido a los radicales libres. (2)

Roturas de una hebra en los telómeros supone la activación de vías de reparación, homóloga o no homóloga, pudiéndose dar lugar, en el caso de la reparación no homóloga, a los círculos teloméricos que llevarían a una situación anómala, de muerte o malignificación de la célula (2).

Vemos a continuación una imagen aportada por dicho estudio, se trata de “Múltiples fragmentos de ADN telomérico extra cromosómico en una célula en metafase A-T de un cultivo expuesto a una dosis alta de peróxido de hidrógeno (algunos de los fragmentos se indican con flechas) (…)”.

Imagen 8. Imagen obtenida de https://academic.oup.com/hmg/article/12/3/227/622382


3. EL CAFÉ:

A día de hoy, el café sigue siendo una de las bebidas más consumidas a nivel mundial debido, en gran parte, a su capacidad de mantener a los individuos en estado de alerta, a parte de por su buen aroma y sabor.

Generalmente, el consumo de café está relacionado con efectos negativos sobre la salud (existen creencias a nivel médico acerca de sus potenciales efectos adversos) y con estilos de vida poco saludables (relacionado con el tabaquismo,  menos horas de sueño…), lo cual le otorga en ocasiones una imagen perjudicial. 

Sin embargo, algunos estudios recientes demuestran que estaría asociado a un menor riesgo de padecer ciertas enfermedades o retrasar el envejecimiento, lo que se podría relacionar con el hecho de que contiene una gran concentración de antioxidantes.  

3.1. GENERALIDADES DEL CAFÉ. ORIGEN Y COMPONENTES.

Se denomina café a la bebida preparada a partir de las semillas del fruto de los cafetos (arbusto tropical del género Coffea spp. ). Comprende muchas especies, sin embargo, sólo se cultivan Arábica y Robusta. Produce frutos carnosos rojos con dos núcleos que contienen cada uno un grano o semilla (3).

El café está compuesto por una gran cantidad de sustancias de diferente naturaleza química (se estiman alrededor de 1000). La mayoría han sido identificadas y están relacionadas con su aroma y sabor. La concentración de estas sustancias en el café es diferente en cada una de las variedades de café y el grano de tostado. (Tabla 1) (3).

En este caso, nos centraremos en dos de ellas: la cafeína y los ácidos clorogénicos, los cuales son muy abundantes, y además, poseen propiedades antioxidantes.

3.1.1. Cafeína:

Tiene otros nombres como mateína o teína. Se trata de una molécula pequeña, que se conoce como 1,3,7-trimetilxantina. En su estructura contiene bases púricas no canónicas como la xantina (4). Es una de las tres metilxantinas que se encuentran en el café (3).

Imagen 9. Estructura molecular de la cafeína (1,3,7-trimetilxantina). Ilustración obtenida de https://molview.org/?cid=2519 (aquí también puedes ver la imagen en 3D).

Se encuentra de forma natural en el (Camellia sisensis), cacao (Theobroma cacao) y obviamente, en el café. Además, se añade en bebidas de consumo habitual como son las bebidas energizantes y cola (3).

Sus funciones se basan principalmente en que actúa como antagonista del receptor de adenosina (del tipo A2a) los cuales son receptores inhibitorios de la señal sináptica. La cafeína estimula al Sistema Nervioso Central (SNC) permitiendo que la transmisión sináptica permanezca activa y de esta manera, se origina un estado de alerta y disminución de la somnolencia. También tiene efectos sobre el sistema cardiovascular, es estimulante de la respiración y se le atribuye una ligera acción diurética (4).

Actualmente se están realizando ensayos clínicos para poder estudiar su posible efecto en la prevención de enfermedades respiratorias pulmonares en prematuros, así también como en tratamientos contra la ansiedad, la diabetes de tipo II o la arteriosclerosis, junto con otras enfermedades cardiovasculares (3).

3.1.2. Ácidos clorogénicos:

Químicamente son ésteres fenólicos (polifenoles). Derivan de la unión éster entre el ácido cafeico y el ácido quínico. En el café se han identificado un total de 11 ácidos clorogénicos, pero generalmente se refiere a aquel que se encuentra en mayor cantidad, que es el 5-O-cafeolquínico (3).

Imagen 10. Estructura del ácido 5-O-cafeolquínico. Ilustración obtenida de https://molview.org/?cid=5280633 (Aquí también puedes ver la imagen en 3D)

Se encuentra de manera natural en el té negro (Camellia sinensis) y en el café (3).

Entre algunas de sus funciones se encuentran: inhibe las metaloproteínas de la matriz, regula el metabolismo de la glucosa y de los ácidos grasos, favorece la secreción biliar y tiene cierta acción hipertensiva, favoreciendo la vasodilatación (3)(5).

Gran parte del ácido clorogénico es metabolizado en el colon por la microbiota, disminuyendo su actividad antioxidante pero favoreciendo su biodisponibilidad (3).

Ha sido utilizado en ensayos sobre el tratamiento del cáncer en estado avanzado y tratamientos para la tolerancia a la glucosa (puede ser de ayuda para las personas que sufren de diabetes de tipo II) y contra la obesidad (3) (5).

3.2. ¿CONSUMIR CAFÉ ES BENEFICIOSO O PERJUDICIAL?. EFECTOS SOBRE LOS TELÓMEROS. VENTAJAS Y DESVENTAJAS.

Debido a las importantes propiedades del café, existe un considerable interés sobre sus efectos por parte de Salud pública, sobre todo en los últimos años, donde se tiene en cuenta cada vez más cómo nuestra forma de vida afecta a nuestra salud. 

Por ello, a pesar de que existen varios estudios que investigan cómo afecta el consumo de café al desarrollo de ciertas enfermedades, o en este caso, a la longitud de los telómeros, es un campo que está poco desarrollado en general porque los estudios son muy recientes. Se necesita más investigación, resultados más concluyentes y mecanismos que los puedan explicar con más precisión. 


Una de las primeras investigaciones, publicada en The Journal of Nutrition realizó un estudio a más de 4700 enfermeras para descubrir si los niveles variables de consumo de café o cafeína estaban asociados con la longitud de los telómeros (en este caso, leucocitarios). Para ello, la información acerca del consumo de café se obtuvo a partir de cuestionarios de frecuencia alimenticia, con diferentes variables, y se midió la longitud relativa de los telómeros en leucocitos mediante técnicas de biología molecular (6). 

Tras realizar el experimento, se encontraron asociaciones lineales significativas con telómeros más largos para un mayor consumo de café total con cafeína. Más concretamente, en comparación con las no bebedoras de café, las probabilidades de tener una longitud de los telómero por encima de la mediana fueron alrededor del 29% en aquellas enfermeras que bebían de 2 a 3 tazas de café al día, y un 36% para aquellas que bebían 3 o más tazas al día. Sin embargo, no se obtuvieron resultados significativos para el consumo de café descafeinado (6).

Los resultados del experimento nos indicarían que la capacidad antioxidante del café sería mayor debido a la cafeína. Sin embargo, después de realizar un ajuste adicional por el consumo total de café (como un ajuste indirecto de los posibles factores de confusión de los otros antioxidantes en el café), desapareció la correlación. Esto sugiere que los otros compuestos del café podrían ser los responsables de la asociación entre el café y la longitud de los telómeros, sin descartar por completo a la cafeína (6).

Imagen 11. Imagen realizada en Biorender. https://app.biorender.com/.

Esta idea además, podría verse reforzada por el hecho de que, durante el proceso de descafeinización, no solo se reduce la concentración de cafeína, sino también se puede reducir las concentraciones de otros antioxidantes como los ácidos clorogénicos (6).

En conclusión, los hallazgos de este primer estudio sugirieron que el consumo de café (especialmente con cafeína) se asociaba con telómeros más largos, pero se necesitaban estudios adicionales para poder aclarar esta idea y que explicaran como los compuestos de café estarían involucrados en en el mantenimiento de los telómeros (6).


En otro estudio posterior, se decidió observar los cambios en la longitud del telómero frente a diferentes estímulos externos, como la temperatura, el alcohol o la cafeína. Para realizar el experimento, se utilizó un cultivo de levaduras (Saccharomyces cerevisiae), a las que se les sometió a un total de 13 estímulos estresantes durante 400 generaciones para estudiar los mecanismos responsables de las alteraciones de la longitud de los telómeros en varias condiciones de estrés (7).

Mutaciones en al menos un 6% de los genes TLM (mantenimiento de la longitud de los telómeros) conducen a la alteración del tamaño de los telómeros. La homeostasis precisa de la longitud de los telómeros depende de una gran red genética que incluye alrededor de 400 genes (conservados en gran medida desde el punto de vista evolutivo). Esta red puede verse afectada precisamente, por varias señales ambientales y diferentes mecanismos de regulación (7). 

En el caso concreto de la cafeína, se identificó a las proteínas Tel1 y Mec1 como proteínas directamente afectadas. Es decir, por primera vez se identificó que estas proteínas medían el estrés por la cafeína (7). 

La cafeína es un inhibidor de las quinasas relacionadas con la fosfatidil inositol-3 quinasas (quinasas similares a PI3K) como la ATR humana y la ATM y sus contrapartes de levadura, Tel1 y Mec1. Por lo tanto, se estudió si las mutaciones en estos genes diana abolirían el acortamiento de los telómeros causado por la cafeína (7). 

Durante el experimento se llegó a la conclusión de que la supresión de tanto Tel1 o Mec1 individual no frena la respuesta a la cafeína (acortamiento de los telómeros). Sin embargo, un doble mutante tel1Δ- mec1Δ es completamente insensible al efecto telomérico de la cafeína, en consonancia con la función conocida que desempeñan estas dos quinasas en la biología de los telómeros (7). 

Imagen 12. Células de tipo salvaje (sin modificar genéticamente), así como las dos colonias independientes en donde se eliminaron los genes codificantes para MEC1 y TEL1 mostraron acortamiento por el efecto de la cafeína. Sin embargo, la cepa de dobles mutantes tel1Δ- mec1Δ no mostró acortamiento telomérico por el efecto de la cafeína. (7)

Por tanto, gracias a este estudio se pudo llegar a la conclusión de que, realmente, la cafeína provoca el acortamiento de los telómeros al inhibir las quinasas reguladoras de tipo ATM / ATR (7).

Imagen 13. Se muestra como afecta la cafeína a la longitud de los telómeros en cepas que mostraban deleciones u otras mutaciones. El eje X muestra la longitud inicial de cada mutante y el eje Y muestra el acortamiento tras 100 generaciones. (7)


Por último, se necesitaba un estudio en el que se pudiera comparar el efecto de la cafeína y el café de manera conjunta.

Los hallazgos del estudio realizado por Larry Tucker (Universidad Brigham Young, en EE.UU), basado en la encuesta nacional NHANES, sugieren que cuanta más cafeína consumían los participantes, más cortos eran los telómeros. Por cada 100 mg de cafeína consumida, los telómeros eran 35,4 pares de bases más cortos tras eliminar el efecto de la edad y de otros factores (8).

Sin embargo, el consumo de café demostró un efecto opuesto sobre la longitud de los telómeros: cuanto más café bebían, más largos eran sus telómeros, de forma independiente a las covariables (8).

Entonces, propone que el café en sí tiene propiedades beneficiosas para la longitud de los telómeros, pero se debe a los otros compuestos y no a la cafeína (8).

Imagen 14. Imagen realizada en Biorender (https://app.biorender.com/.).

Por lo tanto, significa que el consumo de cafeína procedente de otras fuentes distintas del café, como bebidas energéticas, suplementos y refrescos de cola, supone telómeros más cortos y es tan poco saludable como lo es para los que no beben café (8).


El objetivo de otros estudios más recientes se ha basado en encontrar una posible relación entre el consumo de café y el desarrollo de diferentes patologías, observando la variación del tamaño de los telómeros en las mismas. En un estudio realizado en el año 2020 por Ferruchi (Universidad de Yale, EE.UU) se evaluó la asociación transversal entre la ingesta de café y la longitud de los telómeros en los controles de cuatro estudios previos realizados para la detección de varios tipos de cáncer (9).

La conclusión general fue, otra vez, que los bebedores moderados y los bebedores en exceso (más de 3 tazas de café al día) tienen entre 2 y 3 veces más probabilidad de tener una longitud de telómeros por encima de la mediana, a pesar de que fuera poco probable que el consumo de café desempeñara un papel en las posibles asociaciones con la enfermedad (9).

2.2.1. Aspectos beneficiosos del consumo de café.  

Aspecto antioxidante (3):

La actividad antioxidante del café se debe tanto por los ácidos clorogénicos (concretamente del 5-O-cafeoilquínico) como a la presencia de cafeína y otros compuestos derivados del tostado.

Los ácidos clorogénicos son reconocidos como grandes antioxidantes. La capacidad antiradical hidroxilo (OH.) del café depende del ácido 5-O-cafeoilquínico. Actúa como captador de radicales libres superóxido. 

Por otra parte, el proceso de tostado del café induce la formación de compuestos (como las melanoidinas) que también poseen actividad antioxidante. Como gran parte de los ácidos clorogénicos se pierden durante el tostado, el origen de nuevas moléculas con capacidad antioxidante compensa este hecho. 

La cafeína tiene la capacidad de inhibir los efectos del estrés oxidativo provocado por radicales hidroxilos (OH.), peróxidos (ROO.) y oxígeno singlete. A pesar de que la cafeína se considera un gran antioxidante, los resultados de los estudios comentados sugieren que la cafeína no sería el componente con más propiedades beneficiosas, porque también puede actuar acortando los telómeros, tal y como hemos comentado anteriormente.  

Los estudios han demostrado que el café y sus componentes, menos la cafeína, pueden proteger contra el daño oxidativo del DNA porque constituye un alimento con alta capacidad antioxidante al disminuir los niveles de los radicales ROS. De esta manera, se previene el daño provocado en la secuencia o estructura del DNA, y más concretamente, del telómero. 

Expresión de la TERT de la telomerasa (10)*. 

Sin embargo, hace poco se ha descubierto que el consumo exclusivo de cafeína tiene, sorprendentemente, aspectos positivos sobre la longitud del telómero, contradiciendo los hallazgos de los estudios anteriores. 

Los resultados de un estudio realizado recientemente por la Escuela de Biotecnología, Universidad de Ciencia y Tecnología de Tianjin han revelado  que la cafeína promueve la expresión de la transcriptasa inversa de la telomerasa (TERT), esto ocurre tanto a niveles de ARNm como de proteínas. Como consecuencia, permite una mayor tasa de extensión de la longitud de los telómeros y previene la senescencia celular. 

Este estudio se basó en un experimento realizado sobre ratones, a los cuales se les trató con cafeína durante ocho meses. Se observó la extensión de la longitud de los telómeros en el bazo y timo de los ratones, además de un cambio estructural histológico del timo, bazo e hígado de los ratones y la reducción de los niveles de beta-galactosidasa (un biomarcador de la senescencia) en las células.

Imagen 15. Posibles efectos de la cafeína sobre los telómeros: aumento de la expresión de TERT y disminución de la senescencia celular. (10)

Estos resultados sugieren que la cafeína podría promover la expresión de TERT para retrasar la senescencia celular y el envejecimiento. 


3. CONCLUSIÓN:

La ingesta de café es generalizada en gran parte del mundo. Está relacionada con una serie de consecuencias beneficiosas pero también perjudiciales para la salud. 

La longitud de los telómeros es un biomarcador de la senescencia de las células, y por tanto, del envejecimiento. Podemos concluir según los estudios realizados, que a medida que aumenta la ingesta de café, los telómeros tienden a ser más largos; sin embargo, un mayor consumo de cafeína supone el acortamiento de los mismos. Por lo tanto, el consumo de café moderado podría ser positivo para retrasar el envejecimiento.

Estos estudios no suponen la última palabra sobre los beneficios para la salud del café en cuanto a la longitud de los telómeros, dado que hallazgos recientes se contradicen con otros resultados anteriores; sino un comienzo y una llamada de atención para realizar más investigaciones sobre una posible vía para mejorar la salud y la calidad de vida de las personas.


4. BIBLIOGRAFÍA:

  1. Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: Role and response of short guanine tracts at genomic locations. International Journal of Molecular Sciences, 20(17), 4258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/
  2. Tchirkov, A., & Lansdorp, P. M. (2003). Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telangiectasia. Human Molecular Genetics12(3), 227–232. https://doi.org/10.1093/hmg/ddg023
  3. Gotteland, M., & de Pablo, S., V. (2007). Algunas verdades sobre El café. Revista Chilena de Nutricion: Organo Oficial de La Sociedad Chilena de Nutricion, Bromatologia y Toxicologia, 34(2), 105–115. https://doi.org/10.4067/s0717-75182007000200002
  4. Caffeine. (n.d.). Retrieved January 3, 2022, from https://go.drugbank.com/drugs/DB00201
  5. PubChem. (n.d.). Chlorogenic acid. Nih.Gov. Retrieved January 3, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/1794427
  6. Liu, J. J., Crous-Bou, M., Giovannucci, E., & De Vivo, I. (2016). Coffee consumption is positively associated with longer leukocyte telomere length in the nurses’ Health Study. The Journal of Nutrition, 146(7), 1373–1378. https://doi.org/10.3945/jn.116.230490
  7. Romano, G. H., Harari, Y., Yehuda, T., Podhorzer, A., Rubinstein, L., Shamir, R., Gottlieb, A., Silberberg, Y., Pe’er, D., Ruppin, E., Sharan, R., & Kupiec, M. (2013). Environmental stresses disrupt telomere length homeostasis. PLoS Genetics, 9(9), e1003721. https://doi.org/10.1371/journal.pgen.1003721
  8. Tucker, L. A. (2017). Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutrition & Metabolism14(1), 10. https://doi.org/10.1186/s12986-017-0162-x
  9. Steiner, B., Ferrucci, L. M., Mirabello, L., Lan, Q., Hu, W., Liao, L. M., Savage, S. A., De Vivo, I., Hayes, R. B., Rajaraman, P., Huang, W.-Y., Freedman, N. D., & Loftfield, E. (2020). Association between coffee drinking and telomere length in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. PloS One, 15(1), e0226972. https://doi.org/10.1371/journal.pone.0226972
  10. Tao, L., Zhang, W., Zhang, Y., Zhang, M., Zhang, Y., Niu, X., Zhao, Q., Liu, Z., Li, Y., & Diao, A. (2021). Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food & Function, 12(7), 2914–2924. https://doi.org/10.1039/d0fo03246h




ENFERMEDAD DE HUNTINGTON

María Teresa Larriba González y Natalia Guío Marugán

Grado en biología sanitaria, Universidad de Alcalá de Henares

INTRODUCCIÓN 

La enfermedad de Huntington es una enfermedad neurodegenerativa, progresiva y mortal, causada por la repetición ininterrumpida de las bases CAG en el gen HTT, lo que provoca un alargamiento de poliglutamina anormal en la proteína Huntingtina.

Esta enfermedad ha servido como base para estudiar otros trastornos neurodegenerativos, que tienen en común el agregado anormal de proteínas, efectos tóxicos en las células y neuroinflamación. 

La neurodegeneración de los individuos aparece antes de la aparición de los síntomas y se caracteriza por cambios cognitivos, motores y psicológicos.

Actualmente, a partir de la patogenicidad, se están estudiando posibles tratamientos tanto para frenar la enfermedad como para retrasarla o prevenirla, ya que todavía no existe ninguna cura.

GEN HTT

La enfermedad de Huntington es una enfermedad hereditaria originada por la mutación de un gen situado en el cromosoma 4 que está presente en todas las células del cuerpo. Este gen será el que codifique una proteína llamada Huntingtina (HTT). Por lo tanto, el Huntington es una enfermedad neurodegenerativa causada por una mutación en el gen que codifica la proteína huntingtina. 

Esta mutación consiste en una repetición ininterrumpida de las bases CAG, que se traduce en el mal plegamiento de la proteína Huntingtina, originando así la enfermedad de Huntington.

En las personas con esta enfermedad, el codón CAG, que es el responsable de formar el aminoácido glutamina, está repetido de 36-120 veces. 

Fotografía 1.  El exceso de repeticiones del segmento CAG conduce a la producción de una versión anormalmente larga de la proteína Huntingtina. Roche Farma, S.A. (2021). Enfermedad de Huntington- Información básica [Fotografía]. Roche Pacientes. Disponible en https://rochepacientes.es/enfermedad-huntington/causas.html.

PROTEÍNA

Como consecuencia de las repeticiones del trinucleótido CAG en el gen HTT, se produce un estiramiento de poliglutamina en la proteína huntingtina. Esta proteína tiene muchas secuencias consenso llamadas HEAT que son importantes para la interacción con otras proteínas. Estos motivos HEAT provocan que se forme una súper hélice hidrofóbica, la cual protege a la proteína de posibles escisiones.

Están presentes en proteínas encargadas del transporte intracelular y son posibles responsables de provocar el apilamiento de la huntingtina en la formación de complejos proteicos. Además de intervenir en el tráfico intracelular, es necesaria para la formación de sinapsis excitatorias.

La Huntingtina se expresa en altos niveles en las neuronas del SNC donde parece localizarse en el citoplasma y estar asociadas a membranas vesiculares.

Fotografía 2. Estructura de la proteína. Swaminathan, J.  Personal del MSD del Instituto Europeo de Bioinformática. (23 de marzo de 2010). Estructura de la proteína 3D en cristalografía [Fotografía]. Protein Data Bank in Europe.  Disponible en http://www.ebi.ac.uk/pdbe-srv/view/entry/3io4/summary

ENFERMEDAD

Esta enfermedad es del tipo hereditaria autosómica dominante y depende de la edad, y de la repetición de los trinucleótidos CAG.

Cuanto más larga sea esta repetición, mayor es la posibilidad de padecer esta enfermedad. De hecho, una repetición de 40 o más veces de los trinucleótidos CAG provoca la enfermedad en personas mayores de 65 años. Esta longitud está afectada por las mutaciones y el ambiente.

La prevalencia es de 4 a 10 personas por cada 100.000 habitantes en los países occidentales.

La edad media es de 40 años, con una mortalidad a los 15-20 años desde la aparición de la enfermedad.

Fotografía 3. Más de 40 repeticiones CAG en la proteína huntingtina mutada. European Huntington’s Disease Network. (2021). About Huntington’s Disease [Fotografía]. EHDN 2016. Disponible en http://www.ehdn.org/es/about-hd/#inheritance

PATOGÉNESIS

Las repeticiones del trinucleótido CAG llevan a que las hebras de poliglutamina formen una lámina beta que se mantiene unida mediante enlaces de hidrógeno, formando de esta manera los agregados anormales que se acumulan en el cerebro. Estos agregados se pueden transmitir de una célula a otra, como los priones. La pérdida de funcionalidad de proteínas que forman parte de estos agregados producen un efecto deletéreo, que lleva  a la neurodegeneración.

Estos agregados se producen en el núcleo neuronal, pero también pueden aparecer en el citoplasma, dendritas y en la terminal axónica. Las células gliales también contribuyen a la enfermedad de Huntington ya que muchos de estos agregados también actúan sobre ellas.

La huntingtina se puede dividir en fragmentos tóxicos y la acumulación de estos fragmentos es característica también de esta enfermedad.

Otro argumento es que el número de poliglutaminas está correlacionado con la tasa de agregación y con la aparición de la enfermedad. Esto sugiere que haya un vínculo directo entre la agregación y la toxicidad celular. Las poliglutaminas expandidas pueden interferir con regiones ricas en glutamina presentes en los dominios de muchos factores de transcripción. De hecho, la huntingtina mutante interactúa con reguladores de la transcripción lo que lleva a su interrupción. 

Las neuronas se ven comprometidas debido a la disminución de la transcripción de los genes esenciales en la neurotransmisión y por los defectos en la entrega de proteínas y orgánulos a lo largo de sus axones.

Fotografía 4. Formación progresiva de los agregados de la proteína Huntingtina. Li H, Li SH, Cheng AL, Mangiarini L, Bates GP, Li XJ (julio de 1999). Ultrastructural localization and progressive formation of neuropil aggregates in Huntington’s disease transgenic mice [photograpg]. Hum Mol Genet. https://pubmed.ncbi.nlm.nih.gov/10369868/

Debido a la pérdida de la función de la proteína salvaje, los agregados de proteínas motoras y agregados que bloquean los axones, la huntingtina inhibe el transporte axonal rápido de orgánulos. Este transporte se necesita para la correcta entrega a las membranas nucleares durante la transmisión sináptica y su reciclaje. Así, un fallo en la entrega de GABA o AMPA, inhibe la excitabilidad sináptica en la enfermedad de Huntington.

La Huntingtina altera la función mitocondrial y como consecuencia causa la producción de especies reactivas de oxígeno (ROS), que a su vez dañan a las mitocondrias. Además, la Huntingtina se expresa en células inmunitarias que secretan citoquinas proinflamatorias  que causan la neuroinflamación. Hay informes que han descrito un deterioro del proteosoma debido a la expresión expandida de poliglutamina en la huntingtina. 

Fotografía 5. Daño causado por la expresión de la huntingtina mutada sobre las neuronas. Sánchez-Zapardiel, Dra Elena. (13 de marzo de 2015). Nuevas aproximaciones terapéuticas para la enfermedad de Huntington basadas en oligonucleótidos [Fotografía]. Luces en la enfermedad de Huntington. Disponible en http://www.e-huntington.com/

 

SINTOMATOLOGÍA

Los primeros síntomas muestran cambios de personalidad, cognición y control motor sutiles. Los movimientos de coordinación gruesa, como la marcha y la postura, se deterioran más tarde que los movimientos finos. Los individuos se pueden volver irritables, la multitarea se vuelve difícil y aumenta la ansiedad y los olvidos. 

Después de este primer periodo sintomatológico, los enfermos comienzan a mostrar signos de corea, pérdida de coordinación, lentitud, insuficiencia motora y movimientos oculares sacádicos lentos. Sin embargo, la corea no es un buen indicador de la gravedad de la enfermedad, ya que en ocasiones puede aparecer temprano o de forma transitoria. 

Las funciones ejecutivas como la organización, la planificación y la adquisición de nuevas habilidades motoras empeoran con el tiempo. El habla se deteriora más rápidamente que la comprensión. Los síntomas psiquiátricos y conductuales aparecen con cierta frecuencia, pero no muestran una progresión con la gravedad de la enfermedad. La depresión es típica y se estima que el suicidio es entre 5 y 10 veces más frecuente que en el resto de la población.

Fotografía 6. Síntomas de la enfermedad de Huntington.  Lindner, Ellen.(26 de mayo de 2021). Huntington Disease Guide [Fotografía]. VeryWell. Disponible en https://www.verywellhealth.com/huntingtons-disease-overview-5090564

Los enfermos de Huntington son incapaces de mantener una contracción voluntaria constante. Tampoco son capaces de mantener una presión constante de la mano, lo que se llama agarre de la lechera. 

La inconstancia motora es independiente de la corea y sí que avanza progresivamente, siendo un indicador de la gravedad de la enfermedad. A medida que los déficits motores y cognitivos se agravan, los pacientes acaban muriendo, normalmente por complicaciones de las caídas, inanición, disfagia o aspiración.

DIAGNÓSTICO 

Los individuos con riesgo de heredar estas repeticiones se pueden identificar mediante análisis genéticos, ya que las personas con esta enfermedad presentan repeticiones CAG en su genoma. Además, se realizan test de imagen cerebrales, para mostrar los posibles cambios sufridos en la estructura encefálica.  

El diagnóstico formal se hace basándose en signos como movimientos involuntarios, distonía, bradiquinesia e incoordinación, es decir, en la sintomatología neurológica. 

TRATAMIENTO

No existe ninguna cura, pero hay medicamentos que pueden reducir algunos de sus síntomas, como antidepresivos, medicamentos para reducir los cambios de humor e irritabilidad, tetrabenazina, que reduce los movimientos involuntarios de la corea al agotar la dopamina, y antipsicóticos, que bloquean la dopamina. Sin embargo, la mayoría de estos medicamentos causan efectos secundarios problemáticos.

Fotografía 7. Uso de tetrabenazina para reducir los movimientos involuntarios de la corea de Huntington. Gramón Bagó de Uruguay S.A. (2016). Productos- Tetrazol [Fotografía]. Gramón Bagó.  Disponible en https://www.gramonbago.com.uy/contenido/Tetrazol-25-mg-5343

Además, las intervenciones sociales son a menudo igual de efectivas que el tratamiento con medicamentos en pacientes con alteraciones en la conducta. Los grupos de apoyo son buenas fuentes de información y conocimiento que pueden ayudar a los pacientes a superar las dificultades  de la enfermedad. También se proporcionan ayudas en las tareas diarias (terapia ocupacional), alimentación, comunicación (logopedia), movilidad y equilibrio (fisioterapia). 

No obstante, se siguen realizando estudios para descubrir nuevos métodos tanto para tratar la enfermedad, como para predecirla. Se ha avanzado en la identificación de posibles formas de “desactivar» el gen defectuoso que la causa. Además, se están llevando a cabo ensayos clínicos para encontrar agentes modificadores de la enfermedad Huntington que ralentice o revierta. 

Fotografía 8. Grupo de apoyo psicológico. Centro de Terapia y Bienestar Emocional. (28 de junio de 2016). Grupos de apoyo psicológico [Fotografía]. A la Sombra del Árbol. Disponible en http://centrodepsicoterapia.mx/el-grupo-de-apoyo-psicologico/

CONCLUSIÓN

En conclusión, la enfermedad de Huntington es un trastorno neurodegenerativo que está incrementando en los últimos años y para el que se requieren muchos estudios.

Además, esta investigación podrá servir de base en la intervención de otros trastornos neurodegenerativos más frecuentes con los que comparte muchas características, como Alzheimer o Parkinson. 

BIBLIOGRAFÍA

  • Walker FO. (20 de junio de 2007). Huntington’s disease. Lancet. 
  • Ross CA, Tabrizi SJ. (enero de 2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 
  • Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. (5 de julio de 2017) Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. 
  • McColgan P, Tabrizi SJ. (enero de 2018). Huntington’s disease: a clinical review. Eur J Neurol. 



SÍNDROME DE BLOOM

Belén Segovia y Gabriela Zapata

El Síndrome de Bloom (BS) es una enfermedad hereditaria autosómica recesiva, rara causada por una mutación en el gen BLM,  que deriva en dos características principales: 

  • Predisposición a desarrollar todo tipo de cánceres a una edad temprana.
  • Inestabilidad genética caracterizada por anomalías citogenéticas que incluyen numerosas roturas cromosómicas y un alto número de intercambios de cromátidas hermanas. 

Se caracteriza por que los individuos que lo padecen tienen una estatura más baja de lo normal acompañada de facciones características de la enfermedad como son una cara larga y estrecha, nariz y orejas prominentes, con manifestaciones dermatológicas como es una erupción facial desencadenada por la exposición al sol (fotosensibilidad). Todo esto acompañado por una voz aguda, mayor susceptibilidad de padecer infecciones (inmunodeficiencia), y en ellos aumenta el riesgo de padecer cáncer. También padecen de problemas de fertilidad debido al hipogadismo, dificultades de aprendizaje, y retraso en el crecimiento y desarrollo.

Este es un síndrome de inestabilidad cromosómica, y las mutaciones somáticas que se producen como consecuencia de esa inestabilidad, son responsables del mayor riesgo de padecer cáncer. Entre todas las complicaciones, quizá las neoplasias malignas sean las más prominentes y potencialmente mortales. De hecho, los pacientes con BS tienen entre 150 y 300 veces más probabilidades de desarrollar una neoplasia maligna que la población general. Muchos de estos pacientes desarrollan algún tipo de cáncer a lo largo de su vida, y entre ellos destacan la leucemia, linfoma o cáncer colorrectal, de laringe, de mama y de piel. 

Además de los síntomas anteriores, los pacientes con BS presentan niveles de inmunoglobulinas reducidas, lo que conlleva a una mayor susceptibilidad a neumonía, bronquiectasias y enfermedad pulmonar crónica. Aquellos que lo padecen también pueden presentar anomalías endocrinas particularmente anomalías del metabolismo de los carbohidratos, resistencias a la insulina y susceptibilidad a diabetes tipo II, dislipidemia e hipotiroidismo.

Este síndrome prevalece en la población judía Ashkenazi del este de Europa e Israel, lo que explica aproximadamente un tercio de los casos del síndrome de Bloom. De los judíos ashkenazis, 1 de cada 48000 personas lo presentan, y un 1% son portadores de este síndrome. En Estados Unidos se han notificado 170 casos, y raramente se ha notificado en otros países.

  1. ENZIMA (GENÉTICA, FUNCIÓN NORMAL, MECANISMO DE ACCIÓN Y FORMAS INTERMEDIAS)

El Síndrome de Bloom surge por mutaciones en ambas copias del gen BLM, localizado en el brazo largo del cromosoma 15 (15q26.1), por lo tanto la mutación que causa el síndrome es autosómica y, en este caso, recesiva. En esta región del cromosoma se han encontrado diversas patologías normalmente relacionadas con retrasos en el crecimiento y en el desarrollo mental por deleciones o duplicaciones.

Imagen 1. Esquema del cromosoma 15 y localización de BLM. Rescatada de: (https://www.rarechromo.org/media/information/Chromosome%2015/15q26%20deletions%20FTNW.pdf)

El gen situado en ese loci corresponde a una proteína de la familia de las helicasas RecQ, la RecQL3. Esta familia está formada por un solo miembro de origen procariota representado por la proteína RecQ de Escherichia coli, dos miembros de origen eucariota inferior representados por las proteínas Sgs1 y Rqh1, y cinco miembros de origen humano, las proteínas WRN (RecQL2), BLM (RecQL3), RecQ4 (RecQL4), RecQL (RecQL1) y RecQ5 (RecQL5).

Las helicasas son un grupo diverso de enzimas que se unen al DNA y desenrollan las dos hebras en espiral de la molécula del DNA. Este desenrollado es necesario en procesos en el núcleo de la célula, incluyendo la copia del DNA en preparación para la división celular y reparación del DNA dañado. 

Cuando una célula se prepara para dividirse, el DNA que compone los cromosomas se copia de forma que cada nueva célula tendrá dos copias de cada cromosoma, una de cada progenitor. El DNA está dispuesto en las cromátidas hermanas, que están unidas una a otra durante las primeras etapas de la división celular. Las cromátidas hermanas de vez en cuando intercambian pequeñas secciones de DNA durante este tiempo, un proceso denominado intercambio de cromátidas hermanas. Se cree que estos intercambios pueden ser una respuesta al daño de DNA durante el proceso de copia. 

BLM es una helicasa de ADN RecQ dependiente de ATP 3′-5 ′, uno de los estabilizadores del genoma más esenciales involucrados en la regulación de la replicación del ADN, recombinación y vías homólogas y no homólogas de reparación de rotura de doble cadena. Ayuda a evitar el exceso de intercambios de las cromátidas hermanas y también participa en otros procesos que ayudan a mantener la estabilidad del DNA durante el proceso de copia

Se han identificado 151 mutaciones diferentes del gen BLM en las personas con síndrome de Bloom con diferentes orígenes étnicos. Principalmente las mutaciones dan lugar a un codón de paro prematuro que da lugar a una proteína truncada (80% de los casos), o se crea una proteína sin su actividad helicasa (20% de los casos). 

Existe una mutación genética particular que elimina seis nucleótidos y los reemplaza con otros siete en la posición 2281 del DNA. Es la mutación blmAsh, en población judía Ashkenazi, que da lugar a la síntesis de una versión anormalmente corta, no funcional de la proteína BLM. Aparte de esta mutación, hay otras mutaciones del gen BLM que cambian aminoácidos en la secuencia de la proteína o crean una señal de parada precoz en su codificación. Como consecuencia de la ausencia o deficiencia de proteína BLM funcional, la frecuencia de intercambio de las cromátidas de las cromátidas hermanas es de alrededor de 10 veces más alta que el promedio.

Debido a la mutación de esta proteína, puede ocurrir la rotura de los cromosomas por la zona de telómeros, que se produce con mayor frecuencia en los individuos afectados.  Estas roturas, que ocurrirían por una mala interacción de la BLM con los G-cuadruplexos, alteran las actividades normales de las células y provocan los problemas de salud asociados con este síndrome. Sin la proteína BLM, la célula es menos capaz de reparar el daño del ADN provocado por la luz UV, lo que deriva en una mayor sensibilidad a la luz solar. 

Estos cambios genéticos permiten a las células dividirse de forma incontrolada dando lugar a una predisposición en el desarrollo de cánceres.Por otro lado, además de las mutaciones el gen de la BLM sufre otros tipos de alteraciones incluyendo un aumento en el número de copias transcripcionales, aumentando el número de proteínas en muchos cánceres.

De esta manera, se ha visto que las mutaciones en la BLM inducen al desarrollo de tumores y déficits en el desarrollo debido a la ausencia de su acción, lo que provoca intercambios entre las cromátidas hermanas y cromosomas homólogos que acaba provocando graves mutaciones en los individuos. Estas mutaciones se han visto en la línea hematopoyética, pero esto abriría nuevas preguntas para investigar cómo: ¿en qué células pueden darse estas modificaciones?, ¿en qué estado del desarrollo ocurre la recombinación? o ¿están estas mutaciones restringidas al precursor hematopoyético o podrían ocurrir en cualquier estado de desarrollo? 

Imagen 2. Esquema resumen. 

2. ANOMALÍA EN EL SÍNDROME A NIVEL BIOMOLECULAR

La BLM es una proteína que se compone de un conjunto de dominios que median sus funciones. Es una helicasa que utiliza la energía de la hidrólisis del ATP para moverse por una cadena simple de DNA y para poder romper los puentes de hidrógeno. Las helicasas están implicadas en la apertura del dúplex, lo cual se incluye los procesos de replicación, transcripción, recombinación homóloga, y otras formas de reparación del DNA, y todas ellas participan en el mantenimiento de la integridad del genoma.

Como se predice por su homología con las helicasas RecQ, la función de la BLM es hidrolizar el ATP para desenrollar el ADN moviéndose en una sola hebra en la dirección 3´-5´, y prefiere los sustratos que incluyen moléculas que simulan la replicación del DNA e intermediarios de recombinación (incluyendo horquillas de replicación, uniones de Holiday, bucles de desplazamiento y G-cuadruplexos).  Es importante para la estabilidad de la horquilla de reparación, incluso en procesos de daño del DNA. Para ello está implicada en las siguientes procesos: 

Imagen 3. Procesos celulares donde actúa la BLM. Imagen rescatada de: https://pubmed.ncbi.nlm.nih.gov/28232778/ 
  • Participa en la apertura de las dos cadenas para crean cadenas simples que son un sustrato de la RAD51, una enzima muy importante en la reparación del DNA.
  • Implicada en reclutamiento de proteínas para estabilizar la apertura de la horquilla como las ssDNA-binding protein (RPA y RAD51). Estas son recombinasas que previenen que se formen apareamientos incorrectos por recombinación homóloga.  
  • Se encarga de desplazar las uniones de Holliday y de disolverlas sin sobrecruzamiento. 
  • Tiene funciones relacionadas con la interacción con estructuras como los G-cuadruplexos, encargados de mantener la estabilidad del genoma en regiones como los telómeros o los rRNA.
  • La BLM en conjunto con la topoisomerasa IIIα desenrolla las moléculas de DNA con dos uniones de Holliday y las disuelve sin crear productos de recombinación. La topoisomerasa I es una enzima que se une a la doble hebra de DNA y permite el relajamiento del superenrollamiento que se crea en la hebra de DNA. La topoisomerasa IIIα es un tipo de topoisomerasa I, por lo que tiene actividad de corte y empalme que se da en una sola hebra en ssDNA.

La BLM forma un complejo con la topoisomerasa IIIα y otros componentes.  La región de la BLM que interactúa con la topoisomerasa se encuentra localizada en el extremo N-terminal de los 200 últimos aminoácidos de la proteína. De esta manera las proteínas BLM que presentan deleciones en esta región no son capaces de interactuar con la topoisomerasa IIIα. 

Una vez analizados los procesos en los que media la proteína, podemos analizar sus funciones celulares más detalladamente:

A. REPLICACIÓN

La helicasa BLM juega un papel esencial en varios eventos que tienen lugar durante la replicación del ADN. Cuando se produce un daño en la replicación, el ADN se vuelve más propenso a romperse y cualquier estrés replicativo podría ser una fuente de una transformación tumoral temprana

  • Progresión y reparación de la horquilla de replicación: el daño inducido durante la replicación  puede ser inducido por estructuras de ADN atípicas que pueden bloquear la progresión de la horquilla, como G-quadruplex, uniones de Holliday, complejos específicos de proteína-ADN, híbridos de ARN, etc. La enzima BLM es necesaria para la progresión y la estabilidad de la horquilla de replicación en condiciones fisiológicas normales y también es fundamental, después del daño en la replicación, para la estabilización y progreso de las horquillas bloqueadas al desenrollar estructuras de ADN inusuales, evitar la recombinación inapropiada y la supresión de la activación de un nuevo origen.
  • DNA telomérico: las secuencias teloméricas repetidas forman estructuras muy ordenadas, como T-Loops, horquillas y G-quadruplexos, los sustratos preferidos para BLM, que deben disolverse para permitir la replicación adecuada del ADN telomérico.La BLM también participa en el mantenimiento de la integridad de los telómeros por la vía de alargamiento alternativo de los telómeros (ALT), la cual es independiente de la vía de la telomerasa. 
  • DNA ribosomal: las secuencias repetidas del DNA ribosomal se replican de manera única. La alta actividad de transcripción de estas regiones del genoma induce la formación de un R-Loop que si no se resuelve provoca rupturas del DNAr. BLM podría estar implicada en el mantenimiento de la integridad de este DNA, seguramente desenrollando las estructuras complejas  que se formen.

B. RECOMBINACIÓN HOMÓLOGA

BLM interacciona con varios componentes de la maquinaria de recombinación homóloga (HR). La vía de la recombinación homóloga utiliza una secuencia homóloga como plantilla para reparar el ADN dañado o reiniciar las horquillas de replicación bloqueadas. BLM es una de esas proteínas necesarias que actúan en la replicación y recombinación desempeñando funciones tanto pro como anti-recombinogénicas.

  • Reanuda el bloqueo de las horquillas de replicación cuando disuelve las uniones de Holliday.
  • Reparación de la ruptura de la doble hebra: la ruptura de doble hebra es una de las formas más letales de daño en el DNA. En el primer paso, BLM actúa estimulando la actividad nucleasa de la exonucleasa 1 (EXO1) y la helicasa / endoexonucleasa DNA2 para asegurar la resección extensa 5′ de los extremos del ADN generados por la ruptura de doble hebra. Los overhangs creados se recubren rápidamente con la proteína RPA para estabilizarlas y protegerlas de la degradación (BLM tiene actividad recombinasa en este paso). 

El overhang invade la hebra opuesta para buscar un fragmento homólogo a partir del cual pueda darse la reparación. Esta invasión de la hebra es seguida por la síntesis de ADN en el extremo invasor y conduce al desplazamiento de la hebra paralela, formando un D-Loop.

Si la homología encontrada es suficiente, BLM permitirá que continúe la reparación por la vía de recombinación homóloga. Las etapas finales de esta reparación se llevarán a cabo mediante la resolución de las uniones de Holliday (HJs), ya sea por el complejo disolvasoma BLM sin recombinación (actividad anti recombinasa de BLM), o por resolución, lo cual generará productos de recombinación. 

El complejo BLM disolvasoma está compuesto por diversas enzimas: la BLM, topoisomerasa IIIα y y RMI1 y RMI 2,  para procesar las uniones dobles de Holliday (dHJ) generadas durante el paso de invasión de la cadena de la vía de reparación por disolución.

  • Vía alternativa de alargamiento de telómeros (ALT): en algunos cánceres se utiliza esta vía, en la que BLM  interacciona con los telómeros y otras proteínas de esta vía.

Imagen 4. BLM en la recombinación homóloga. Extraída de https://pubmed.ncbi.nlm.nih.gov/33736941/ 

C. TRANSCRIPCIÓN

BLM desenrolla los dúplex híbridos de ARN-ADN, conocidos como R-Loop, y G4, en sitios transcripcionalmente activos, específicamente después del daño del ADN. La resolución de estas estructuras es esencial para permitir el acceso de la maquinaria de reparación a las lesiones inducidas, asegurando así una reanudación normal de la transcripción.

Imagen 5. Funciones de la BLM. Imagen rescatada de https://pubmed.ncbi.nlm.nih.gov/33736941/ 

3. ESTRUCTURA DE LA BLM

El gen que codifica para la proteína BLM es un gen de 1417 aminoácidos ubicado en el cromosoma 15q26.1, que posee una actividad helicasa dependiente de ATP 3′ → 5 ‘. Su expresión está muy regulada en el ciclo celular, expresándose niveles más altos en las fases S y G2.

La proteína BLM, como ya hemos mencionado, es una helicasa de tipo RecQ, cuya función se basa en desenrollar el DNA, una actividad que utiliza ATP para moverse a lo largo de una hebra simple y para romper los enlaces de hidrógeno que mantienen unidas las dos cadenas de DNA. Su actividad dependiente de ATP es muy relevante en procesos tales como la replicación, transcripción, recombinación y reparación del ADN, por lo que estas proteínas presentan un sitio de unión a ATP. Las RecQ pertenecen a la superfamilia de las helicasas SF2 y juegan un papel crucial en el metabolismo del ADN, asegurando así el mantenimiento de la integridad y la estructura del genoma.

Sin embargo, el dominio helicasa no es suficiente para la actividad de la BLM. Asociado a este dominio helicasa está el dominio RQC, y ambos forman el núcleo catalítico de la BLM. El dominio helicasa es el más conservado en la familia de las RecQ, ya que es común a las proteínas de la familia SF2.

Este RQC se compone de un motivo de unión  Zn 2+  y un dominio de “alas hélice de ADN” (winged helix domain) que conjuntamente actúan como el lugar de anclaje a la doble hebra del DNA. En este motivo se encuentra también una pinza-β que actúa insertando el complejo en el DNA y causando la separación del dúplex. El extremo C-terminal del RQC es el dominio “helicasa y ribonucleasa D C-terminal (HRDC)” que no se une directamente al DNA pero puede ayudar en las actividades helicasa y ATPasa. Es necesario para las disoluciones de las uniones de Holiday.  

El extremo N- terminal de la proteína presenta la región de reconocimiento (la BLM forma un complejo con numerosas enzimas como son la topoisomerasa IIIα, RM1 y RM2, RPA…). La combinación de la actividad de desenrollamiento y reconocimiento cataliza la función del intercambio entre cadenas, que requiere promover previamente la disolución de las uniones holiday o el retroceso de las horquillas de replicación estancadas. No se han encontrado mutaciones que causen el síndrome de Bloom fuera de los dominios de RQC y helicasa. 

Los miembros de la familia RecQ tienen siete motivos helicasa conservados, insertados entre dominios N-terminales y C-terminales únicos de tamaño variable. Existen cinco RecQ en humanos, las cuales tienen un dominio de helicasa estructuralmente conservado que contiene cajas Walker A y B y una caja DEAH que funciona en el desenrollamiento, siendo este dependiente de ATP y Mg2 +. Otros dominios como el RQC (RecQ C-terminal) y HDRC también son comunes a las proteínas de esta familia.

Estudios recientes basados en diversas bases de datos hacen ver que existe un pequeño dominio de unión a ácido nucleico en la región C-terminal de todos los miembros de la familia RecQ, lo que sugiere características comunes de reconocimiento de ADN en las helicasas. 

Las helicasas RecQ se pueden clasificar en 2 grupos: el grupo que contiene las proteínas WRN, BLM, RecQ4, Sgs1 y Rqh1 cuyos tamaños van desde 1208 a 1447 aminoácidos ácidos, y el grupo que contiene las proteínas RecQL y RecQ5 con 410 a 649 aminoácidos y que se componen prácticamente del dominio helicasa central. Cabe destacar que, como podemos visualizar en la imagen, las proteínas BLM, WRN, RecQL y RecQ5, presentan una señal de localización nuclear (NLS) en la región C-terminal.

Imagen 6. Proteínas de la familia de la RecQ. Imagen rescatada de: https://pubmed.ncbi.nlm.nih.gov/33736941/

Imagen 7. Estructura de la BLM. Imagen rescatada de https://pubmed.ncbi.nlm.nih.gov/28232778/ 

Además se sabe que hasta hoy solo RecQ, RecQL, BLM, WRN y Sgs1 tienen una actividad ADN helicasa dependiente de ATP 3′-5 ’. La helicasa WRN tiene una actividad enzimática exonucleasa 3′-5 ′ adicional dentro de su región N-terminal.

Imagen 8. Se representan las proteínas con las que interactúa la proteína BLM, la cual se compone de los dominios de núcleo de ATPasa / helicasa, RQC y HRDC. Podemos ver las proteínas clave involucradas en diferentes vías de reparación e interactuando con BLM junto con sus posiciones de unión a BLM. Extraída de: (https://www.frontiersin.org/files/Articles/634789/fgene-12-634789-HTML/image_m/fgene-12-634789-g001.jpg).

4. PATOLOGÍA Y CÁNCER

El cáncer es la complicación médica más frecuente y grave que aparece en pacientes con Síndrome de Bloom, y suele llevar a la muerte. En este síndrome se dan una amplia variedad de tipos de cáncer y ubicaciones anatómicas en personas con SB. Las células con mutaciones en BLM conducen a la acumulación de DNA con daños con alta sensibilidad hacia varios fármacos quimioterapéuticos.

La distribución de los cánceres es parecida a la que sucede en la población general, pero ocurren a edades más tempranas y una sola persona puede experimentar múltiples cánceres. En esta enfermedad los más frecuentes son la leucemia y el linfoma, y dentro de los tumores sólidos los más comunes son los cánceres del tracto digestivo, en particular el adenocarcinoma del tracto intestinal superior e inferior. Los carcinomas de células de cabeza y cuello también se han diagnosticado con frecuencia, especialmente en la base de la lengua, la epiglotis y el esófago. 

Como dato curioso cabe destacar que la población judía Ashkenazi tiene alta prevalencia de cáncer colorrectal precisamente por la mutación en este gen. De acuerdo con su función de cuidar el genoma, se han visto mutaciones en el gen BLM asociadas con el riesgo de cáncer colorrectal. Aproximadamente el 0,11% de pacientes presentan  la mutación heterocigótica BLM que confiere un riesgo de penetrancia de bajo a moderado para desarrollar cáncer colorrectal., y entre estos pacientes se encuentran personas con ascendencia judía asquenazí, portadores de alta frecuencia de la mutación heterocigótica BLMAsh.

Múltiples estudios muestran que la proteína BLM tiene una implicación directa en la regulación de varios oncogenes y genes supresores de tumores . BLM potencia la degradación y alteración de la función del factor de transcripción oncogénico c-Jun, moderando así el efecto  de este último en la transformación neoplásica.

Es más, el gen c-Myc, que regula la transcripción de muchos genes fundamentales y se sobreexpresa en varios tipos de cánceres, también es un objetivo de BLM. De hecho, BLM disminuye los niveles de c-Myc y retrasa la iniciación del tumor en múltiples líneas de células de ratón. Es por esto que muchos autores denominan a la proteína como una “cuidadora de la supresión de tumores”

El efecto directo y específico de la función de BLM en la prevención del cáncer ya que BLM trabaja en conjunto con p53 para efectuar la apoptosis; por lo tanto, previene la transformación tumoral. Se han realizado múltiples estudios en células con síndrome de Bloom en los que se identifican anomalías tanto en la acumulación como en la activación de p53 inducida por daños en el ADN.

Imagen 9. Mecanismos implicados en neoplasia de BLM. Imagen rescatada de https://www.frontiersin.org/files/Articles/634789/fgene-12-634789-HTML/image_m/fgene-12-634789-g004.jpg

Además de la predisposición al cáncer que tienen los individuos que presentan mutaciones en la BLM, también existe esta predisposición en pacientes con sobreexpresión de la BLM. En estos últimos casos, hay una eficiencia muy alta de reparación así como de recombinación por la vía homóloga, lo que se traduce en una acumulación del daño en el DNA e hiper recombinación. 

5. SISTEMA INMUNE

Se afirma también que la proteína BLM está involucrada en el desarrollo y mantenimiento del sistema inmune. En pacientes con el síndrome de Bloom se observan niveles de inmunoglobulinas IgM e IgA anormales y de IgG reducidos. Con los niveles disminuidos de BLM, las células precursoras linfoides de la médula ósea y las células B maduras del bazo y la cavidad peritoneal disminuyen significativamente, e incluso se ven fallos en el desarrollo de las células T.

Debido a la acumulación de ADN dañado en células deficientes en BLM, también se ha observado una mayor expresión del gen inflamatorio estimulado por interferón y niveles aumentados en sangre periférica. BLM juega un papel indispensable en el desarrollo, proliferación, mantenimiento, estabilidad y función de las células inmunes y contribuye a la inmunodeficiencia en pacientes afectados por BS.

6. MÉTODOS DIAGNÓSTICOS Y TRATAMIENTO

Debido a que este síndrome es raro, no existen pautas de tratamiento basadas en evidencias científicas. Entre las principales preocupaciones destacan las anomalías de la piel, los problemas de crecimiento y nutrición, las anomalías endocrinológicas y el riesgo de neoplasias malignas, que son la mayor causa de muerte.

Como remedio para los problemas de crecimiento se emplean preparados y alimentos hipercalóricos. Además el tratamiento con hormona de crecimiento podría mejorar el crecimiento lineal, aunque su uso es controvertido por algunos estudios que identifican un mayor riesgo para el desarrollo de cáncer en niños.

En algunos casos en los que hay una disminución de los niveles de inmunoglobulinas y se sufren infecciones, se pueden aplicar antibióticos y tratamiento con inmunoglobulinas intravenosas o subcutáneas.

Resulta fundamental el cuidado de la piel con cremas y protectores y su vigilancia en cuanto a la aparición de posibles cánceres.

La enfermedad sigue un patrón de herencia autosómico recesivo y es por eso que se ofrece consejo genético a las parejas en riesgo cuando ambos son portadores de la mutación, informándoles de un riesgo del 25% de tener un hijo afectado en cada embarazo.

El diagnóstico se intuye clínicamente en base a la identificación de síntomas propios del síndrome de Bloom y se confirma mediante la identificación de variantes patogénicas bialélicas del gen BLM en las pruebas moleculares. También puede confirmarse mediante un análisis citogenético que identifica un mayor número de intercambios entre cromátidas hermanas (esta prueba se puede realizar en el embarazo) o mediante técnicas de secuenciación y deleción/duplicación de BLM.

BIBLIOGRAFÍA

–        Ababou M. (2021) Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab. 2021 May;133(1):35-48. doi: 10.1016/j.ymgme.2021.03.003. Epub 2021 Mar 10. PMID: 33736941.

–        Cunniff C, Bassetti JA, Ellis NA. (2017) Bloom’s Syndrome: Clinical Spectrum, Molecular Pathogenesis, and Cancer Predisposition. Mol Syndromol. 2017 Jan;8(1):4-23. doi: 10.1159/000452082. Epub 2016 Nov 5. PMID: 28232778; PMCID: PMC5260600.

–        Kaur E, Agrawal R and Sengupta S (2021) Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front. Genet. 12:634789. doi: 10.3389/fgene.2021.634789