Tomar café acorta nuestra vida… ¿o no?

por Lucía Dueñas Prieto & Edurne Gómez Maroto, estudiantes de 3º Biología Sanitaria (Universidad de Alcalá, UAH)


Sabemos que nuestro estilo de vida y hábitos influyen en la salud y en el funcionamiento de nuestro organismo. Durante años, el consumo de café ha estado ligado a efectos negativos sobre la salud y al envejecimiento debido, principalmente, al acortamiento de los telómeros, pero… ¿Cómo afecta realmente el consumo de café a nivel molecular? ¿Es esta idea totalmente cierta?

Este artículo se centrará en el estudio del café y en aclarar su modo de acción sobre los telómeros en relación al envejecimiento molecular.


1. IMPORTANCIA DEL TELÓMERO:

La longitud de los telómeros es un biomarcador tanto del pasado replicativo como del potencial replicativo de las células. Cada vez hay más pruebas que apoyan la idea de que los telómeros desempeñan un papel importante en la senescencia, puesto que se ha demostrado que aquellos individuos con telómeros más cortos tienen un mayor riesgo de muerte prematura en comparación con aquellos con telómeros más largos. La longitud de los telómeros es predictiva de los años de vida sana.

1.1. ¿QUÉ SON LOS TELÓMEROS?

Los telómeros son los extremos de los cromosomas, los cuales van a resultar fundamentales para que los distintos cromosomas no se unan entre sí. Se caracterizan por ser regiones de DNA no codificante y altamente repetitivas. Son estructuras que van a dar estabilidad estructural a los cromosomas, y en la división celular. Las repeticiones teloméricas permiten que no se pierda esta información. 

Imagen 1. Situación de los telómeros y repeticiones teloméricas. Imagen realizada en Biorender. (https://app.biorender.com/).

Los eucariotas presentan una característica diferente respecto a los procariotas, y es que tienen un final abierto, por lo que hay un problema: el acortamiento telomérico. Este consiste en que cada replicación se va acortando la secuencia del final, lo que nos lleva a la secuencia de Hayflick, que es el número limitado de replicaciones que puede tener la línea de una célula; en humanos es de hasta 40-60 replicaciones.

1.2. ESTRUCTURA DE LOS TELÓMEROS: G-CUADRUPLEXOS.

Los G-cuadruplexos son un tipo estructural de DNA. Su estructura se basa en 3 bases (XXX) + 3 G (GGG) + 3 bases (XXX). Estas estructuras rompen su estructura de DNA B, la molécula se abre y se unen las guaninas entre ellas formando pares de Hoogsteen, que es la estructura más estable entre guaninas. Se trata de 3 planos de una tétrada de guaninas que se estabilizan con un catéter metálico (normalmente es K+ y a veces Na+). Hablamos de G-tétradas, debido a que se produce una asociación de cuatro guaninas emparejadas a través de enlaces de hidrógeno de Hoogsteen, que se apilan verticalmente.

Los G-cuadruplexos son fundamentales en el funcionamiento del telómero, pues protegen la terminación de los genes de la acción de nucleasas.

Imagen 2. Estructura normal de los G-cuadruplexos. Esquema obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

1.3. REPLICACIÓN DE LOS TELÓMEROS.

Vamos a explicar brevemente la replicación de los telómeros, para entender el papel de algunas proteínas que se mencionarán en el artículo. Hay dos proteínas en los telómeros:

  • La shelterina, la cual se une en la secuencia telomérica y fomentan el plegamiento de esta secuencia (T-loop), anudan el extremo del telómero y protege la secuencia de la acción de las nucleasas.
  • La telomerasa, enzima polimerasa reversa, pues tiene un complejo de RNA y proteína, es decir, tiene su propia secuencia de RNA. Sintetiza DNA a partir de un molde de RNA, lo que forma el complejo de TERT. La telomerasa es una enzima altamente regulada para que la longitud de los telómeros se mantenga más o menos constante.  

Para que comience la elongación de los telómeros es necesario abrir los G-cuadruplexos para que actúe la maquinaria enzimática de la replicación. Una vez que están abiertos, la telomerasa se encarga de sintetizar DNA. Cuando se termina de sintetizar todo el telómero, cesa su función y se retira. A continuación, el complejo CST recluta la DNA pol α y primasa, que sintetiza el cebador, y continúa la DNA pol δ. Cuando termina, actúa una ligasa para poder unir . De esta manera, se alarga el telómero.

Otras enzimas importantes que participan en el proceso de replicación del telómero son:

  • RTLE1: es una proteína helicasa que abre los G-cuadruplexos, es fundamental para el mantenimiento de la estructura del telómero, pues tiene una actividad antirrecombinasa. Cuando el DNA tiene un extremo libre, con un overhang (como ocurriría con el telómero si no estuviese cerrado), es el momento en el que se activan las señales de reparación del DNA: recombinación homóloga, no homóloga y por medio de transposones (o retro).
  • Mec1 y Tel1. Tel1 es fundamental para reclutar la telomerasa, con la ayuda de Mec1. Además, se encargan de coordinar la respuesta al daño en el DNA mediante la fosforilación de proteínas implicadas en la reparación del DNA y vías de control. Así estas dos proteínas pueden actuar cuando el DNA esta expuesto a agentes oxidantes. (1)

2. CONEXIÓN ENTRE ESTRÉS OXIDATIVO Y ACORTAMIENTO TELOMÉRICO:

2.1 CONCEPTOS EN RELACIÓN AL DAÑO OXIDATIVO.

A continuación vamos a definir algunos conceptos en relación al daño oxidativo:

  • Radicales libres. Es una especie química que va a ser altamente reactiva, con capacidad oxidativa, debido a que presentan uno o más electrones desapareados, y tienden a captar un electrón de moléculas estables. Los radicales libres se forman como productos intermedios en reacciones químicas, por lo que como estas reacciones tienen lugar constantemente en el cuerpo, va a haber unas especies químicas para protegernos de los radicales libres, esta es la función de los antioxidantes.
  • Antioxidante. Los antioxidantes son nutrientes que “retardan o previenen la oxidación de otras moléculas”.  El modo de acción de los antioxidantes es “romper” y terminar la reacción de oxidación-reducción, eliminando intermediarios del radical libre o inhibiendo otras reacciones de oxidación. De esta manera, son capaces de disminuir el efecto perjudicial que originan los radicales libres. Estas moléculas, de diferente origen y estructura, se pueden encontrar en una gran variedad de alimentos como vegetales, frutas, vino tinto, chocolate, aceites, y café.
  • Estrés oxidativo. El estrés oxidativo es una patología celular debida al aumento de la actividad oxidativa en el interior celular, como consecuencia de que las sustancias antioxidantes no son suficientes para combatir la cantidad de radicales libres en sangre. Origina cambios estructurales y funcionales en estas, provocando así envejecimiento celular y con ello una futura apoptosis; por lo tanto causa deterioro tisular y desarrollo de patologías. También, como veremos en este artículo, provoca daños en el DNA, afectando a los telómeros.
  • Especies reactivas del oxígeno (ROS). Estas especies van a ser formadas de forma exógena y endógena, desde propios hábitos (fumar, inhalar humo del tabaco, consumo de alcohol y otras drogas, y consumir pocos antioxidantes, o gastarlos muy deprisa debido al metabolismo), que podríamos evitar, hasta el propio el ambiente en el que nos encontramos (radiación, luz solar y radiación UV, y contaminación del aire).

Estar expuestos a alguno de los elementos mencionados anteriormente, van a dar lugar especies reactivas del oxígeno (ROS), moléculas altamente reactivas debido a la presencia de una capa de electrones de valencia desapareada. Son moléculas inestables que contienen oxígeno y que reaccionan fácilmente con otras moléculas en la célula. Los ROS incluyen anión superóxido, peróxido de hidrógeno, radical hidroxilo y especies reactivas del nitrógeno, los cuales tienen que ser combatidos por antioxidantes. Estas especies se producen en la mitocondria durante procesos oxidativos del metabolismo.

Si alcanzamos una situación de estrés oxidativo, y hay sobreproducción de ROS, esto va a conllevar a un deterioro de los componentes celulares (ácidos nucleicos, proteínas y lípidos). Centrándonos en los ácidos nucleicos, pueden causar lesiones de bases, roturas en el DNA, entrecruzamientos entre cadenas…

2.2. ACORTAMIENTO DEL TELÓMERO EN RELACIÓN AL ESTRÉS OXIDATIVO.

Sabemos que los telómeros están en los extremos de los cromosomas, y son ricos en guanina, así que adopta estructuras del tipo G-cuadruplexo, dificultando la actuación de la telomerasa, debido a que hay que abrirlas para que se pueda llevar a cabo la elongación de los telómeros. (2)

Sin embargo, la guanina es la nucleobase más propensa a la oxidación (ya podemos ir deduciendo cúal es el problema). Como los G-cuadruplexos son estructuras ricas en guanina esta será una estructura que responde al estrés oxidativo, porque las guaninas provocarán daño oxidativo en el DNA, dando lugar a lesiones que provocan mutaciones y problemas en la replicación, traducción y transcripción del DNA. (2)

El por qué de la guanina es la nucleobase más propensa a la oxidación, se debe a que tiene un bajo potencial redox. Como resultado de la oxidación se forma  8-oxo-7,8-dihidroguanina, y el problema reside en que ahora esta guanina oxidada aparea con una adenina, en lugar de con una citosina como ocurre en situaciones normales, lo que conlleva a una mutación si no es reparada por los sistemas moleculares. Así, las ROS pueden ocasionar modificaciones en las guaninas, las cuales pueden afectar a la estructura de los G-cuadruplexos al reducir la estabilidad térmica de sus motivos, afectando a la unión de proteínas a la estructura. (2)

Vemos a continuación la estructura de la guanina y de la guanina oxidada:

Imagen 3. Oxidación de la guanina a 8-oxo-guanina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Ahora observamos cómo sería el apareamiento normal de la guanina con una citosina:

Imagen 4. Apareamiento normal, guanina con citosina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Aquí observamos el apareamiento que tiene lugar entre la guanina oxidada con una adenina:

Imagen 5. Apareamiento entre guanina y adenina. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Vemos que el enlace entre la guanina – citosina, es un triple enlace, mucho más fuerte y estable que el que se forma entre la 8-oxo-guanina – adenina, el cual es un doble enlace, así entre G-C hay un emparejamiento de bases de Watson y Crick, y en el caso de 8-oxo-G – A hay un emparejamiento de bases de Hoogsteen. Esto supone que la ausencia de un tercer enlace de hidrógeno en el emparejamiento de Hoogsteen indica menor estabilidad, como ya hemos comentado, lo que conduce a la obstrucción de la formación de la tétrada de los G-cuadruplexos. (2) 

Vemos cómo sería la tétrada de G-cuadruplexos con guanina:

Imagen 6. Estructura G-cuadruplexos. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Y así es cómo se ve alterada la estructura de los G-cuadruplexos si la guanina se oxida, estructura que se encuentra en un estado casi desplegado:

Imagen 7. Alteración G-cuadruplexos. Ilustración obtenida de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/

Varios grupos de investigación han estudiado este suceso, observando que se llega a oxidar hasta un 50% de la guanina en los G-cuadruplexos, pues es una estructura susceptible al estrés oxidativo. (2)

Lo que ocurre es que esta estructura de G-cuadruplexos se forma en los extremos de los cromosomas para protegerlos de la acción de las nucleasas, porque son extremos libres. Si en presencia de ROS los G-cuadruplexos se despliegan, y no es reparado, estos extremos van a estar expuestos a las nucleasas. Un nivel elevado de 8-oxo-guanina dificulta la actividad de la telomerasa, lo que va a producir un acortamiento de los telómeros, la función y su mantenimiento. (2)

El acortamiento de los telómeros va a producir senescencia prematura. Estudios han demostrado que la pérdida de los telómeros afecta a muchos procesos celulares, produciendo apoptosis, envejecimiento, carcinogénesis e inestabilidad cromosómica. Si esto no se repara, se producen roturas en el DNA y aparición de mutaciones puesto que ha habido un apareamiento 8-oxo-G – A que supone ante una posible futura replicación la aparición de un apareamiento A – T, cambiando completamente la base inicial. (2)

Hay estudios con fibroblastos humanos normales en los que por la incorporación de ROS, se aceleró el acortamiento de los telómeros en la replicación, lo que supuso roturas teloméricas de una sola hebra debido a los radicales libres. (2)

Roturas de una hebra en los telómeros supone la activación de vías de reparación, homóloga o no homóloga, pudiéndose dar lugar, en el caso de la reparación no homóloga, a los círculos teloméricos que llevarían a una situación anómala, de muerte o malignificación de la célula (2).

Vemos a continuación una imagen aportada por dicho estudio, se trata de “Múltiples fragmentos de ADN telomérico extra cromosómico en una célula en metafase A-T de un cultivo expuesto a una dosis alta de peróxido de hidrógeno (algunos de los fragmentos se indican con flechas) (…)”.

Imagen 8. Imagen obtenida de https://academic.oup.com/hmg/article/12/3/227/622382


3. EL CAFÉ:

A día de hoy, el café sigue siendo una de las bebidas más consumidas a nivel mundial debido, en gran parte, a su capacidad de mantener a los individuos en estado de alerta, a parte de por su buen aroma y sabor.

Generalmente, el consumo de café está relacionado con efectos negativos sobre la salud (existen creencias a nivel médico acerca de sus potenciales efectos adversos) y con estilos de vida poco saludables (relacionado con el tabaquismo,  menos horas de sueño…), lo cual le otorga en ocasiones una imagen perjudicial. 

Sin embargo, algunos estudios recientes demuestran que estaría asociado a un menor riesgo de padecer ciertas enfermedades o retrasar el envejecimiento, lo que se podría relacionar con el hecho de que contiene una gran concentración de antioxidantes.  

3.1. GENERALIDADES DEL CAFÉ. ORIGEN Y COMPONENTES.

Se denomina café a la bebida preparada a partir de las semillas del fruto de los cafetos (arbusto tropical del género Coffea spp. ). Comprende muchas especies, sin embargo, sólo se cultivan Arábica y Robusta. Produce frutos carnosos rojos con dos núcleos que contienen cada uno un grano o semilla (3).

El café está compuesto por una gran cantidad de sustancias de diferente naturaleza química (se estiman alrededor de 1000). La mayoría han sido identificadas y están relacionadas con su aroma y sabor. La concentración de estas sustancias en el café es diferente en cada una de las variedades de café y el grano de tostado. (Tabla 1) (3).

En este caso, nos centraremos en dos de ellas: la cafeína y los ácidos clorogénicos, los cuales son muy abundantes, y además, poseen propiedades antioxidantes.

3.1.1. Cafeína:

Tiene otros nombres como mateína o teína. Se trata de una molécula pequeña, que se conoce como 1,3,7-trimetilxantina. En su estructura contiene bases púricas no canónicas como la xantina (4). Es una de las tres metilxantinas que se encuentran en el café (3).

Imagen 9. Estructura molecular de la cafeína (1,3,7-trimetilxantina). Ilustración obtenida de https://molview.org/?cid=2519 (aquí también puedes ver la imagen en 3D).

Se encuentra de forma natural en el (Camellia sisensis), cacao (Theobroma cacao) y obviamente, en el café. Además, se añade en bebidas de consumo habitual como son las bebidas energizantes y cola (3).

Sus funciones se basan principalmente en que actúa como antagonista del receptor de adenosina (del tipo A2a) los cuales son receptores inhibitorios de la señal sináptica. La cafeína estimula al Sistema Nervioso Central (SNC) permitiendo que la transmisión sináptica permanezca activa y de esta manera, se origina un estado de alerta y disminución de la somnolencia. También tiene efectos sobre el sistema cardiovascular, es estimulante de la respiración y se le atribuye una ligera acción diurética (4).

Actualmente se están realizando ensayos clínicos para poder estudiar su posible efecto en la prevención de enfermedades respiratorias pulmonares en prematuros, así también como en tratamientos contra la ansiedad, la diabetes de tipo II o la arteriosclerosis, junto con otras enfermedades cardiovasculares (3).

3.1.2. Ácidos clorogénicos:

Químicamente son ésteres fenólicos (polifenoles). Derivan de la unión éster entre el ácido cafeico y el ácido quínico. En el café se han identificado un total de 11 ácidos clorogénicos, pero generalmente se refiere a aquel que se encuentra en mayor cantidad, que es el 5-O-cafeolquínico (3).

Imagen 10. Estructura del ácido 5-O-cafeolquínico. Ilustración obtenida de https://molview.org/?cid=5280633 (Aquí también puedes ver la imagen en 3D)

Se encuentra de manera natural en el té negro (Camellia sinensis) y en el café (3).

Entre algunas de sus funciones se encuentran: inhibe las metaloproteínas de la matriz, regula el metabolismo de la glucosa y de los ácidos grasos, favorece la secreción biliar y tiene cierta acción hipertensiva, favoreciendo la vasodilatación (3)(5).

Gran parte del ácido clorogénico es metabolizado en el colon por la microbiota, disminuyendo su actividad antioxidante pero favoreciendo su biodisponibilidad (3).

Ha sido utilizado en ensayos sobre el tratamiento del cáncer en estado avanzado y tratamientos para la tolerancia a la glucosa (puede ser de ayuda para las personas que sufren de diabetes de tipo II) y contra la obesidad (3) (5).

3.2. ¿CONSUMIR CAFÉ ES BENEFICIOSO O PERJUDICIAL?. EFECTOS SOBRE LOS TELÓMEROS. VENTAJAS Y DESVENTAJAS.

Debido a las importantes propiedades del café, existe un considerable interés sobre sus efectos por parte de Salud pública, sobre todo en los últimos años, donde se tiene en cuenta cada vez más cómo nuestra forma de vida afecta a nuestra salud. 

Por ello, a pesar de que existen varios estudios que investigan cómo afecta el consumo de café al desarrollo de ciertas enfermedades, o en este caso, a la longitud de los telómeros, es un campo que está poco desarrollado en general porque los estudios son muy recientes. Se necesita más investigación, resultados más concluyentes y mecanismos que los puedan explicar con más precisión. 


Una de las primeras investigaciones, publicada en The Journal of Nutrition realizó un estudio a más de 4700 enfermeras para descubrir si los niveles variables de consumo de café o cafeína estaban asociados con la longitud de los telómeros (en este caso, leucocitarios). Para ello, la información acerca del consumo de café se obtuvo a partir de cuestionarios de frecuencia alimenticia, con diferentes variables, y se midió la longitud relativa de los telómeros en leucocitos mediante técnicas de biología molecular (6). 

Tras realizar el experimento, se encontraron asociaciones lineales significativas con telómeros más largos para un mayor consumo de café total con cafeína. Más concretamente, en comparación con las no bebedoras de café, las probabilidades de tener una longitud de los telómero por encima de la mediana fueron alrededor del 29% en aquellas enfermeras que bebían de 2 a 3 tazas de café al día, y un 36% para aquellas que bebían 3 o más tazas al día. Sin embargo, no se obtuvieron resultados significativos para el consumo de café descafeinado (6).

Los resultados del experimento nos indicarían que la capacidad antioxidante del café sería mayor debido a la cafeína. Sin embargo, después de realizar un ajuste adicional por el consumo total de café (como un ajuste indirecto de los posibles factores de confusión de los otros antioxidantes en el café), desapareció la correlación. Esto sugiere que los otros compuestos del café podrían ser los responsables de la asociación entre el café y la longitud de los telómeros, sin descartar por completo a la cafeína (6).

Imagen 11. Imagen realizada en Biorender. https://app.biorender.com/.

Esta idea además, podría verse reforzada por el hecho de que, durante el proceso de descafeinización, no solo se reduce la concentración de cafeína, sino también se puede reducir las concentraciones de otros antioxidantes como los ácidos clorogénicos (6).

En conclusión, los hallazgos de este primer estudio sugirieron que el consumo de café (especialmente con cafeína) se asociaba con telómeros más largos, pero se necesitaban estudios adicionales para poder aclarar esta idea y que explicaran como los compuestos de café estarían involucrados en en el mantenimiento de los telómeros (6).


En otro estudio posterior, se decidió observar los cambios en la longitud del telómero frente a diferentes estímulos externos, como la temperatura, el alcohol o la cafeína. Para realizar el experimento, se utilizó un cultivo de levaduras (Saccharomyces cerevisiae), a las que se les sometió a un total de 13 estímulos estresantes durante 400 generaciones para estudiar los mecanismos responsables de las alteraciones de la longitud de los telómeros en varias condiciones de estrés (7).

Mutaciones en al menos un 6% de los genes TLM (mantenimiento de la longitud de los telómeros) conducen a la alteración del tamaño de los telómeros. La homeostasis precisa de la longitud de los telómeros depende de una gran red genética que incluye alrededor de 400 genes (conservados en gran medida desde el punto de vista evolutivo). Esta red puede verse afectada precisamente, por varias señales ambientales y diferentes mecanismos de regulación (7). 

En el caso concreto de la cafeína, se identificó a las proteínas Tel1 y Mec1 como proteínas directamente afectadas. Es decir, por primera vez se identificó que estas proteínas medían el estrés por la cafeína (7). 

La cafeína es un inhibidor de las quinasas relacionadas con la fosfatidil inositol-3 quinasas (quinasas similares a PI3K) como la ATR humana y la ATM y sus contrapartes de levadura, Tel1 y Mec1. Por lo tanto, se estudió si las mutaciones en estos genes diana abolirían el acortamiento de los telómeros causado por la cafeína (7). 

Durante el experimento se llegó a la conclusión de que la supresión de tanto Tel1 o Mec1 individual no frena la respuesta a la cafeína (acortamiento de los telómeros). Sin embargo, un doble mutante tel1Δ- mec1Δ es completamente insensible al efecto telomérico de la cafeína, en consonancia con la función conocida que desempeñan estas dos quinasas en la biología de los telómeros (7). 

Imagen 12. Células de tipo salvaje (sin modificar genéticamente), así como las dos colonias independientes en donde se eliminaron los genes codificantes para MEC1 y TEL1 mostraron acortamiento por el efecto de la cafeína. Sin embargo, la cepa de dobles mutantes tel1Δ- mec1Δ no mostró acortamiento telomérico por el efecto de la cafeína. (7)

Por tanto, gracias a este estudio se pudo llegar a la conclusión de que, realmente, la cafeína provoca el acortamiento de los telómeros al inhibir las quinasas reguladoras de tipo ATM / ATR (7).

Imagen 13. Se muestra como afecta la cafeína a la longitud de los telómeros en cepas que mostraban deleciones u otras mutaciones. El eje X muestra la longitud inicial de cada mutante y el eje Y muestra el acortamiento tras 100 generaciones. (7)


Por último, se necesitaba un estudio en el que se pudiera comparar el efecto de la cafeína y el café de manera conjunta.

Los hallazgos del estudio realizado por Larry Tucker (Universidad Brigham Young, en EE.UU), basado en la encuesta nacional NHANES, sugieren que cuanta más cafeína consumían los participantes, más cortos eran los telómeros. Por cada 100 mg de cafeína consumida, los telómeros eran 35,4 pares de bases más cortos tras eliminar el efecto de la edad y de otros factores (8).

Sin embargo, el consumo de café demostró un efecto opuesto sobre la longitud de los telómeros: cuanto más café bebían, más largos eran sus telómeros, de forma independiente a las covariables (8).

Entonces, propone que el café en sí tiene propiedades beneficiosas para la longitud de los telómeros, pero se debe a los otros compuestos y no a la cafeína (8).

Imagen 14. Imagen realizada en Biorender (https://app.biorender.com/.).

Por lo tanto, significa que el consumo de cafeína procedente de otras fuentes distintas del café, como bebidas energéticas, suplementos y refrescos de cola, supone telómeros más cortos y es tan poco saludable como lo es para los que no beben café (8).


El objetivo de otros estudios más recientes se ha basado en encontrar una posible relación entre el consumo de café y el desarrollo de diferentes patologías, observando la variación del tamaño de los telómeros en las mismas. En un estudio realizado en el año 2020 por Ferruchi (Universidad de Yale, EE.UU) se evaluó la asociación transversal entre la ingesta de café y la longitud de los telómeros en los controles de cuatro estudios previos realizados para la detección de varios tipos de cáncer (9).

La conclusión general fue, otra vez, que los bebedores moderados y los bebedores en exceso (más de 3 tazas de café al día) tienen entre 2 y 3 veces más probabilidad de tener una longitud de telómeros por encima de la mediana, a pesar de que fuera poco probable que el consumo de café desempeñara un papel en las posibles asociaciones con la enfermedad (9).

2.2.1. Aspectos beneficiosos del consumo de café.  

Aspecto antioxidante (3):

La actividad antioxidante del café se debe tanto por los ácidos clorogénicos (concretamente del 5-O-cafeoilquínico) como a la presencia de cafeína y otros compuestos derivados del tostado.

Los ácidos clorogénicos son reconocidos como grandes antioxidantes. La capacidad antiradical hidroxilo (OH.) del café depende del ácido 5-O-cafeoilquínico. Actúa como captador de radicales libres superóxido. 

Por otra parte, el proceso de tostado del café induce la formación de compuestos (como las melanoidinas) que también poseen actividad antioxidante. Como gran parte de los ácidos clorogénicos se pierden durante el tostado, el origen de nuevas moléculas con capacidad antioxidante compensa este hecho. 

La cafeína tiene la capacidad de inhibir los efectos del estrés oxidativo provocado por radicales hidroxilos (OH.), peróxidos (ROO.) y oxígeno singlete. A pesar de que la cafeína se considera un gran antioxidante, los resultados de los estudios comentados sugieren que la cafeína no sería el componente con más propiedades beneficiosas, porque también puede actuar acortando los telómeros, tal y como hemos comentado anteriormente.  

Los estudios han demostrado que el café y sus componentes, menos la cafeína, pueden proteger contra el daño oxidativo del DNA porque constituye un alimento con alta capacidad antioxidante al disminuir los niveles de los radicales ROS. De esta manera, se previene el daño provocado en la secuencia o estructura del DNA, y más concretamente, del telómero. 

Expresión de la TERT de la telomerasa (10)*. 

Sin embargo, hace poco se ha descubierto que el consumo exclusivo de cafeína tiene, sorprendentemente, aspectos positivos sobre la longitud del telómero, contradiciendo los hallazgos de los estudios anteriores. 

Los resultados de un estudio realizado recientemente por la Escuela de Biotecnología, Universidad de Ciencia y Tecnología de Tianjin han revelado  que la cafeína promueve la expresión de la transcriptasa inversa de la telomerasa (TERT), esto ocurre tanto a niveles de ARNm como de proteínas. Como consecuencia, permite una mayor tasa de extensión de la longitud de los telómeros y previene la senescencia celular. 

Este estudio se basó en un experimento realizado sobre ratones, a los cuales se les trató con cafeína durante ocho meses. Se observó la extensión de la longitud de los telómeros en el bazo y timo de los ratones, además de un cambio estructural histológico del timo, bazo e hígado de los ratones y la reducción de los niveles de beta-galactosidasa (un biomarcador de la senescencia) en las células.

Imagen 15. Posibles efectos de la cafeína sobre los telómeros: aumento de la expresión de TERT y disminución de la senescencia celular. (10)

Estos resultados sugieren que la cafeína podría promover la expresión de TERT para retrasar la senescencia celular y el envejecimiento. 


3. CONCLUSIÓN:

La ingesta de café es generalizada en gran parte del mundo. Está relacionada con una serie de consecuencias beneficiosas pero también perjudiciales para la salud. 

La longitud de los telómeros es un biomarcador de la senescencia de las células, y por tanto, del envejecimiento. Podemos concluir según los estudios realizados, que a medida que aumenta la ingesta de café, los telómeros tienden a ser más largos; sin embargo, un mayor consumo de cafeína supone el acortamiento de los mismos. Por lo tanto, el consumo de café moderado podría ser positivo para retrasar el envejecimiento.

Estos estudios no suponen la última palabra sobre los beneficios para la salud del café en cuanto a la longitud de los telómeros, dado que hallazgos recientes se contradicen con otros resultados anteriores; sino un comienzo y una llamada de atención para realizar más investigaciones sobre una posible vía para mejorar la salud y la calidad de vida de las personas.


4. BIBLIOGRAFÍA:

  1. Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: Role and response of short guanine tracts at genomic locations. International Journal of Molecular Sciences, 20(17), 4258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747389/
  2. Tchirkov, A., & Lansdorp, P. M. (2003). Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia-telangiectasia. Human Molecular Genetics12(3), 227–232. https://doi.org/10.1093/hmg/ddg023
  3. Gotteland, M., & de Pablo, S., V. (2007). Algunas verdades sobre El café. Revista Chilena de Nutricion: Organo Oficial de La Sociedad Chilena de Nutricion, Bromatologia y Toxicologia, 34(2), 105–115. https://doi.org/10.4067/s0717-75182007000200002
  4. Caffeine. (n.d.). Retrieved January 3, 2022, from https://go.drugbank.com/drugs/DB00201
  5. PubChem. (n.d.). Chlorogenic acid. Nih.Gov. Retrieved January 3, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/1794427
  6. Liu, J. J., Crous-Bou, M., Giovannucci, E., & De Vivo, I. (2016). Coffee consumption is positively associated with longer leukocyte telomere length in the nurses’ Health Study. The Journal of Nutrition, 146(7), 1373–1378. https://doi.org/10.3945/jn.116.230490
  7. Romano, G. H., Harari, Y., Yehuda, T., Podhorzer, A., Rubinstein, L., Shamir, R., Gottlieb, A., Silberberg, Y., Pe’er, D., Ruppin, E., Sharan, R., & Kupiec, M. (2013). Environmental stresses disrupt telomere length homeostasis. PLoS Genetics, 9(9), e1003721. https://doi.org/10.1371/journal.pgen.1003721
  8. Tucker, L. A. (2017). Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutrition & Metabolism14(1), 10. https://doi.org/10.1186/s12986-017-0162-x
  9. Steiner, B., Ferrucci, L. M., Mirabello, L., Lan, Q., Hu, W., Liao, L. M., Savage, S. A., De Vivo, I., Hayes, R. B., Rajaraman, P., Huang, W.-Y., Freedman, N. D., & Loftfield, E. (2020). Association between coffee drinking and telomere length in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. PloS One, 15(1), e0226972. https://doi.org/10.1371/journal.pone.0226972
  10. Tao, L., Zhang, W., Zhang, Y., Zhang, M., Zhang, Y., Niu, X., Zhao, Q., Liu, Z., Li, Y., & Diao, A. (2021). Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food & Function, 12(7), 2914–2924. https://doi.org/10.1039/d0fo03246h




ENFERMEDAD DE HUNTINGTON

María Teresa Larriba González y Natalia Guío Marugán

Grado en biología sanitaria, Universidad de Alcalá de Henares

INTRODUCCIÓN 

La enfermedad de Huntington es una enfermedad neurodegenerativa, progresiva y mortal, causada por la repetición ininterrumpida de las bases CAG en el gen HTT, lo que provoca un alargamiento de poliglutamina anormal en la proteína Huntingtina.

Esta enfermedad ha servido como base para estudiar otros trastornos neurodegenerativos, que tienen en común el agregado anormal de proteínas, efectos tóxicos en las células y neuroinflamación. 

La neurodegeneración de los individuos aparece antes de la aparición de los síntomas y se caracteriza por cambios cognitivos, motores y psicológicos.

Actualmente, a partir de la patogenicidad, se están estudiando posibles tratamientos tanto para frenar la enfermedad como para retrasarla o prevenirla, ya que todavía no existe ninguna cura.

GEN HTT

La enfermedad de Huntington es una enfermedad hereditaria originada por la mutación de un gen situado en el cromosoma 4 que está presente en todas las células del cuerpo. Este gen será el que codifique una proteína llamada Huntingtina (HTT). Por lo tanto, el Huntington es una enfermedad neurodegenerativa causada por una mutación en el gen que codifica la proteína huntingtina. 

Esta mutación consiste en una repetición ininterrumpida de las bases CAG, que se traduce en el mal plegamiento de la proteína Huntingtina, originando así la enfermedad de Huntington.

En las personas con esta enfermedad, el codón CAG, que es el responsable de formar el aminoácido glutamina, está repetido de 36-120 veces. 

Fotografía 1.  El exceso de repeticiones del segmento CAG conduce a la producción de una versión anormalmente larga de la proteína Huntingtina. Roche Farma, S.A. (2021). Enfermedad de Huntington- Información básica [Fotografía]. Roche Pacientes. Disponible en https://rochepacientes.es/enfermedad-huntington/causas.html.

PROTEÍNA

Como consecuencia de las repeticiones del trinucleótido CAG en el gen HTT, se produce un estiramiento de poliglutamina en la proteína huntingtina. Esta proteína tiene muchas secuencias consenso llamadas HEAT que son importantes para la interacción con otras proteínas. Estos motivos HEAT provocan que se forme una súper hélice hidrofóbica, la cual protege a la proteína de posibles escisiones.

Están presentes en proteínas encargadas del transporte intracelular y son posibles responsables de provocar el apilamiento de la huntingtina en la formación de complejos proteicos. Además de intervenir en el tráfico intracelular, es necesaria para la formación de sinapsis excitatorias.

La Huntingtina se expresa en altos niveles en las neuronas del SNC donde parece localizarse en el citoplasma y estar asociadas a membranas vesiculares.

Fotografía 2. Estructura de la proteína. Swaminathan, J.  Personal del MSD del Instituto Europeo de Bioinformática. (23 de marzo de 2010). Estructura de la proteína 3D en cristalografía [Fotografía]. Protein Data Bank in Europe.  Disponible en http://www.ebi.ac.uk/pdbe-srv/view/entry/3io4/summary

ENFERMEDAD

Esta enfermedad es del tipo hereditaria autosómica dominante y depende de la edad, y de la repetición de los trinucleótidos CAG.

Cuanto más larga sea esta repetición, mayor es la posibilidad de padecer esta enfermedad. De hecho, una repetición de 40 o más veces de los trinucleótidos CAG provoca la enfermedad en personas mayores de 65 años. Esta longitud está afectada por las mutaciones y el ambiente.

La prevalencia es de 4 a 10 personas por cada 100.000 habitantes en los países occidentales.

La edad media es de 40 años, con una mortalidad a los 15-20 años desde la aparición de la enfermedad.

Fotografía 3. Más de 40 repeticiones CAG en la proteína huntingtina mutada. European Huntington’s Disease Network. (2021). About Huntington’s Disease [Fotografía]. EHDN 2016. Disponible en http://www.ehdn.org/es/about-hd/#inheritance

PATOGÉNESIS

Las repeticiones del trinucleótido CAG llevan a que las hebras de poliglutamina formen una lámina beta que se mantiene unida mediante enlaces de hidrógeno, formando de esta manera los agregados anormales que se acumulan en el cerebro. Estos agregados se pueden transmitir de una célula a otra, como los priones. La pérdida de funcionalidad de proteínas que forman parte de estos agregados producen un efecto deletéreo, que lleva  a la neurodegeneración.

Estos agregados se producen en el núcleo neuronal, pero también pueden aparecer en el citoplasma, dendritas y en la terminal axónica. Las células gliales también contribuyen a la enfermedad de Huntington ya que muchos de estos agregados también actúan sobre ellas.

La huntingtina se puede dividir en fragmentos tóxicos y la acumulación de estos fragmentos es característica también de esta enfermedad.

Otro argumento es que el número de poliglutaminas está correlacionado con la tasa de agregación y con la aparición de la enfermedad. Esto sugiere que haya un vínculo directo entre la agregación y la toxicidad celular. Las poliglutaminas expandidas pueden interferir con regiones ricas en glutamina presentes en los dominios de muchos factores de transcripción. De hecho, la huntingtina mutante interactúa con reguladores de la transcripción lo que lleva a su interrupción. 

Las neuronas se ven comprometidas debido a la disminución de la transcripción de los genes esenciales en la neurotransmisión y por los defectos en la entrega de proteínas y orgánulos a lo largo de sus axones.

Fotografía 4. Formación progresiva de los agregados de la proteína Huntingtina. Li H, Li SH, Cheng AL, Mangiarini L, Bates GP, Li XJ (julio de 1999). Ultrastructural localization and progressive formation of neuropil aggregates in Huntington’s disease transgenic mice [photograpg]. Hum Mol Genet. https://pubmed.ncbi.nlm.nih.gov/10369868/

Debido a la pérdida de la función de la proteína salvaje, los agregados de proteínas motoras y agregados que bloquean los axones, la huntingtina inhibe el transporte axonal rápido de orgánulos. Este transporte se necesita para la correcta entrega a las membranas nucleares durante la transmisión sináptica y su reciclaje. Así, un fallo en la entrega de GABA o AMPA, inhibe la excitabilidad sináptica en la enfermedad de Huntington.

La Huntingtina altera la función mitocondrial y como consecuencia causa la producción de especies reactivas de oxígeno (ROS), que a su vez dañan a las mitocondrias. Además, la Huntingtina se expresa en células inmunitarias que secretan citoquinas proinflamatorias  que causan la neuroinflamación. Hay informes que han descrito un deterioro del proteosoma debido a la expresión expandida de poliglutamina en la huntingtina. 

Fotografía 5. Daño causado por la expresión de la huntingtina mutada sobre las neuronas. Sánchez-Zapardiel, Dra Elena. (13 de marzo de 2015). Nuevas aproximaciones terapéuticas para la enfermedad de Huntington basadas en oligonucleótidos [Fotografía]. Luces en la enfermedad de Huntington. Disponible en http://www.e-huntington.com/

 

SINTOMATOLOGÍA

Los primeros síntomas muestran cambios de personalidad, cognición y control motor sutiles. Los movimientos de coordinación gruesa, como la marcha y la postura, se deterioran más tarde que los movimientos finos. Los individuos se pueden volver irritables, la multitarea se vuelve difícil y aumenta la ansiedad y los olvidos. 

Después de este primer periodo sintomatológico, los enfermos comienzan a mostrar signos de corea, pérdida de coordinación, lentitud, insuficiencia motora y movimientos oculares sacádicos lentos. Sin embargo, la corea no es un buen indicador de la gravedad de la enfermedad, ya que en ocasiones puede aparecer temprano o de forma transitoria. 

Las funciones ejecutivas como la organización, la planificación y la adquisición de nuevas habilidades motoras empeoran con el tiempo. El habla se deteriora más rápidamente que la comprensión. Los síntomas psiquiátricos y conductuales aparecen con cierta frecuencia, pero no muestran una progresión con la gravedad de la enfermedad. La depresión es típica y se estima que el suicidio es entre 5 y 10 veces más frecuente que en el resto de la población.

Fotografía 6. Síntomas de la enfermedad de Huntington.  Lindner, Ellen.(26 de mayo de 2021). Huntington Disease Guide [Fotografía]. VeryWell. Disponible en https://www.verywellhealth.com/huntingtons-disease-overview-5090564

Los enfermos de Huntington son incapaces de mantener una contracción voluntaria constante. Tampoco son capaces de mantener una presión constante de la mano, lo que se llama agarre de la lechera. 

La inconstancia motora es independiente de la corea y sí que avanza progresivamente, siendo un indicador de la gravedad de la enfermedad. A medida que los déficits motores y cognitivos se agravan, los pacientes acaban muriendo, normalmente por complicaciones de las caídas, inanición, disfagia o aspiración.

DIAGNÓSTICO 

Los individuos con riesgo de heredar estas repeticiones se pueden identificar mediante análisis genéticos, ya que las personas con esta enfermedad presentan repeticiones CAG en su genoma. Además, se realizan test de imagen cerebrales, para mostrar los posibles cambios sufridos en la estructura encefálica.  

El diagnóstico formal se hace basándose en signos como movimientos involuntarios, distonía, bradiquinesia e incoordinación, es decir, en la sintomatología neurológica. 

TRATAMIENTO

No existe ninguna cura, pero hay medicamentos que pueden reducir algunos de sus síntomas, como antidepresivos, medicamentos para reducir los cambios de humor e irritabilidad, tetrabenazina, que reduce los movimientos involuntarios de la corea al agotar la dopamina, y antipsicóticos, que bloquean la dopamina. Sin embargo, la mayoría de estos medicamentos causan efectos secundarios problemáticos.

Fotografía 7. Uso de tetrabenazina para reducir los movimientos involuntarios de la corea de Huntington. Gramón Bagó de Uruguay S.A. (2016). Productos- Tetrazol [Fotografía]. Gramón Bagó.  Disponible en https://www.gramonbago.com.uy/contenido/Tetrazol-25-mg-5343

Además, las intervenciones sociales son a menudo igual de efectivas que el tratamiento con medicamentos en pacientes con alteraciones en la conducta. Los grupos de apoyo son buenas fuentes de información y conocimiento que pueden ayudar a los pacientes a superar las dificultades  de la enfermedad. También se proporcionan ayudas en las tareas diarias (terapia ocupacional), alimentación, comunicación (logopedia), movilidad y equilibrio (fisioterapia). 

No obstante, se siguen realizando estudios para descubrir nuevos métodos tanto para tratar la enfermedad, como para predecirla. Se ha avanzado en la identificación de posibles formas de “desactivar» el gen defectuoso que la causa. Además, se están llevando a cabo ensayos clínicos para encontrar agentes modificadores de la enfermedad Huntington que ralentice o revierta. 

Fotografía 8. Grupo de apoyo psicológico. Centro de Terapia y Bienestar Emocional. (28 de junio de 2016). Grupos de apoyo psicológico [Fotografía]. A la Sombra del Árbol. Disponible en http://centrodepsicoterapia.mx/el-grupo-de-apoyo-psicologico/

CONCLUSIÓN

En conclusión, la enfermedad de Huntington es un trastorno neurodegenerativo que está incrementando en los últimos años y para el que se requieren muchos estudios.

Además, esta investigación podrá servir de base en la intervención de otros trastornos neurodegenerativos más frecuentes con los que comparte muchas características, como Alzheimer o Parkinson. 

BIBLIOGRAFÍA

  • Walker FO. (20 de junio de 2007). Huntington’s disease. Lancet. 
  • Ross CA, Tabrizi SJ. (enero de 2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 
  • Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. (5 de julio de 2017) Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. 
  • McColgan P, Tabrizi SJ. (enero de 2018). Huntington’s disease: a clinical review. Eur J Neurol. 



SÍNDROME DE BLOOM

Belén Segovia y Gabriela Zapata

El Síndrome de Bloom (BS) es una enfermedad hereditaria autosómica recesiva, rara causada por una mutación en el gen BLM,  que deriva en dos características principales: 

  • Predisposición a desarrollar todo tipo de cánceres a una edad temprana.
  • Inestabilidad genética caracterizada por anomalías citogenéticas que incluyen numerosas roturas cromosómicas y un alto número de intercambios de cromátidas hermanas. 

Se caracteriza por que los individuos que lo padecen tienen una estatura más baja de lo normal acompañada de facciones características de la enfermedad como son una cara larga y estrecha, nariz y orejas prominentes, con manifestaciones dermatológicas como es una erupción facial desencadenada por la exposición al sol (fotosensibilidad). Todo esto acompañado por una voz aguda, mayor susceptibilidad de padecer infecciones (inmunodeficiencia), y en ellos aumenta el riesgo de padecer cáncer. También padecen de problemas de fertilidad debido al hipogadismo, dificultades de aprendizaje, y retraso en el crecimiento y desarrollo.

Este es un síndrome de inestabilidad cromosómica, y las mutaciones somáticas que se producen como consecuencia de esa inestabilidad, son responsables del mayor riesgo de padecer cáncer. Entre todas las complicaciones, quizá las neoplasias malignas sean las más prominentes y potencialmente mortales. De hecho, los pacientes con BS tienen entre 150 y 300 veces más probabilidades de desarrollar una neoplasia maligna que la población general. Muchos de estos pacientes desarrollan algún tipo de cáncer a lo largo de su vida, y entre ellos destacan la leucemia, linfoma o cáncer colorrectal, de laringe, de mama y de piel. 

Además de los síntomas anteriores, los pacientes con BS presentan niveles de inmunoglobulinas reducidas, lo que conlleva a una mayor susceptibilidad a neumonía, bronquiectasias y enfermedad pulmonar crónica. Aquellos que lo padecen también pueden presentar anomalías endocrinas particularmente anomalías del metabolismo de los carbohidratos, resistencias a la insulina y susceptibilidad a diabetes tipo II, dislipidemia e hipotiroidismo.

Este síndrome prevalece en la población judía Ashkenazi del este de Europa e Israel, lo que explica aproximadamente un tercio de los casos del síndrome de Bloom. De los judíos ashkenazis, 1 de cada 48000 personas lo presentan, y un 1% son portadores de este síndrome. En Estados Unidos se han notificado 170 casos, y raramente se ha notificado en otros países.

  1. ENZIMA (GENÉTICA, FUNCIÓN NORMAL, MECANISMO DE ACCIÓN Y FORMAS INTERMEDIAS)

El Síndrome de Bloom surge por mutaciones en ambas copias del gen BLM, localizado en el brazo largo del cromosoma 15 (15q26.1), por lo tanto la mutación que causa el síndrome es autosómica y, en este caso, recesiva. En esta región del cromosoma se han encontrado diversas patologías normalmente relacionadas con retrasos en el crecimiento y en el desarrollo mental por deleciones o duplicaciones.

Imagen 1. Esquema del cromosoma 15 y localización de BLM. Rescatada de: (https://www.rarechromo.org/media/information/Chromosome%2015/15q26%20deletions%20FTNW.pdf)

El gen situado en ese loci corresponde a una proteína de la familia de las helicasas RecQ, la RecQL3. Esta familia está formada por un solo miembro de origen procariota representado por la proteína RecQ de Escherichia coli, dos miembros de origen eucariota inferior representados por las proteínas Sgs1 y Rqh1, y cinco miembros de origen humano, las proteínas WRN (RecQL2), BLM (RecQL3), RecQ4 (RecQL4), RecQL (RecQL1) y RecQ5 (RecQL5).

Las helicasas son un grupo diverso de enzimas que se unen al DNA y desenrollan las dos hebras en espiral de la molécula del DNA. Este desenrollado es necesario en procesos en el núcleo de la célula, incluyendo la copia del DNA en preparación para la división celular y reparación del DNA dañado. 

Cuando una célula se prepara para dividirse, el DNA que compone los cromosomas se copia de forma que cada nueva célula tendrá dos copias de cada cromosoma, una de cada progenitor. El DNA está dispuesto en las cromátidas hermanas, que están unidas una a otra durante las primeras etapas de la división celular. Las cromátidas hermanas de vez en cuando intercambian pequeñas secciones de DNA durante este tiempo, un proceso denominado intercambio de cromátidas hermanas. Se cree que estos intercambios pueden ser una respuesta al daño de DNA durante el proceso de copia. 

BLM es una helicasa de ADN RecQ dependiente de ATP 3′-5 ′, uno de los estabilizadores del genoma más esenciales involucrados en la regulación de la replicación del ADN, recombinación y vías homólogas y no homólogas de reparación de rotura de doble cadena. Ayuda a evitar el exceso de intercambios de las cromátidas hermanas y también participa en otros procesos que ayudan a mantener la estabilidad del DNA durante el proceso de copia

Se han identificado 151 mutaciones diferentes del gen BLM en las personas con síndrome de Bloom con diferentes orígenes étnicos. Principalmente las mutaciones dan lugar a un codón de paro prematuro que da lugar a una proteína truncada (80% de los casos), o se crea una proteína sin su actividad helicasa (20% de los casos). 

Existe una mutación genética particular que elimina seis nucleótidos y los reemplaza con otros siete en la posición 2281 del DNA. Es la mutación blmAsh, en población judía Ashkenazi, que da lugar a la síntesis de una versión anormalmente corta, no funcional de la proteína BLM. Aparte de esta mutación, hay otras mutaciones del gen BLM que cambian aminoácidos en la secuencia de la proteína o crean una señal de parada precoz en su codificación. Como consecuencia de la ausencia o deficiencia de proteína BLM funcional, la frecuencia de intercambio de las cromátidas de las cromátidas hermanas es de alrededor de 10 veces más alta que el promedio.

Debido a la mutación de esta proteína, puede ocurrir la rotura de los cromosomas por la zona de telómeros, que se produce con mayor frecuencia en los individuos afectados.  Estas roturas, que ocurrirían por una mala interacción de la BLM con los G-cuadruplexos, alteran las actividades normales de las células y provocan los problemas de salud asociados con este síndrome. Sin la proteína BLM, la célula es menos capaz de reparar el daño del ADN provocado por la luz UV, lo que deriva en una mayor sensibilidad a la luz solar. 

Estos cambios genéticos permiten a las células dividirse de forma incontrolada dando lugar a una predisposición en el desarrollo de cánceres.Por otro lado, además de las mutaciones el gen de la BLM sufre otros tipos de alteraciones incluyendo un aumento en el número de copias transcripcionales, aumentando el número de proteínas en muchos cánceres.

De esta manera, se ha visto que las mutaciones en la BLM inducen al desarrollo de tumores y déficits en el desarrollo debido a la ausencia de su acción, lo que provoca intercambios entre las cromátidas hermanas y cromosomas homólogos que acaba provocando graves mutaciones en los individuos. Estas mutaciones se han visto en la línea hematopoyética, pero esto abriría nuevas preguntas para investigar cómo: ¿en qué células pueden darse estas modificaciones?, ¿en qué estado del desarrollo ocurre la recombinación? o ¿están estas mutaciones restringidas al precursor hematopoyético o podrían ocurrir en cualquier estado de desarrollo? 

Imagen 2. Esquema resumen. 

2. ANOMALÍA EN EL SÍNDROME A NIVEL BIOMOLECULAR

La BLM es una proteína que se compone de un conjunto de dominios que median sus funciones. Es una helicasa que utiliza la energía de la hidrólisis del ATP para moverse por una cadena simple de DNA y para poder romper los puentes de hidrógeno. Las helicasas están implicadas en la apertura del dúplex, lo cual se incluye los procesos de replicación, transcripción, recombinación homóloga, y otras formas de reparación del DNA, y todas ellas participan en el mantenimiento de la integridad del genoma.

Como se predice por su homología con las helicasas RecQ, la función de la BLM es hidrolizar el ATP para desenrollar el ADN moviéndose en una sola hebra en la dirección 3´-5´, y prefiere los sustratos que incluyen moléculas que simulan la replicación del DNA e intermediarios de recombinación (incluyendo horquillas de replicación, uniones de Holiday, bucles de desplazamiento y G-cuadruplexos).  Es importante para la estabilidad de la horquilla de reparación, incluso en procesos de daño del DNA. Para ello está implicada en las siguientes procesos: 

Imagen 3. Procesos celulares donde actúa la BLM. Imagen rescatada de: https://pubmed.ncbi.nlm.nih.gov/28232778/ 
  • Participa en la apertura de las dos cadenas para crean cadenas simples que son un sustrato de la RAD51, una enzima muy importante en la reparación del DNA.
  • Implicada en reclutamiento de proteínas para estabilizar la apertura de la horquilla como las ssDNA-binding protein (RPA y RAD51). Estas son recombinasas que previenen que se formen apareamientos incorrectos por recombinación homóloga.  
  • Se encarga de desplazar las uniones de Holliday y de disolverlas sin sobrecruzamiento. 
  • Tiene funciones relacionadas con la interacción con estructuras como los G-cuadruplexos, encargados de mantener la estabilidad del genoma en regiones como los telómeros o los rRNA.
  • La BLM en conjunto con la topoisomerasa IIIα desenrolla las moléculas de DNA con dos uniones de Holliday y las disuelve sin crear productos de recombinación. La topoisomerasa I es una enzima que se une a la doble hebra de DNA y permite el relajamiento del superenrollamiento que se crea en la hebra de DNA. La topoisomerasa IIIα es un tipo de topoisomerasa I, por lo que tiene actividad de corte y empalme que se da en una sola hebra en ssDNA.

La BLM forma un complejo con la topoisomerasa IIIα y otros componentes.  La región de la BLM que interactúa con la topoisomerasa se encuentra localizada en el extremo N-terminal de los 200 últimos aminoácidos de la proteína. De esta manera las proteínas BLM que presentan deleciones en esta región no son capaces de interactuar con la topoisomerasa IIIα. 

Una vez analizados los procesos en los que media la proteína, podemos analizar sus funciones celulares más detalladamente:

A. REPLICACIÓN

La helicasa BLM juega un papel esencial en varios eventos que tienen lugar durante la replicación del ADN. Cuando se produce un daño en la replicación, el ADN se vuelve más propenso a romperse y cualquier estrés replicativo podría ser una fuente de una transformación tumoral temprana

  • Progresión y reparación de la horquilla de replicación: el daño inducido durante la replicación  puede ser inducido por estructuras de ADN atípicas que pueden bloquear la progresión de la horquilla, como G-quadruplex, uniones de Holliday, complejos específicos de proteína-ADN, híbridos de ARN, etc. La enzima BLM es necesaria para la progresión y la estabilidad de la horquilla de replicación en condiciones fisiológicas normales y también es fundamental, después del daño en la replicación, para la estabilización y progreso de las horquillas bloqueadas al desenrollar estructuras de ADN inusuales, evitar la recombinación inapropiada y la supresión de la activación de un nuevo origen.
  • DNA telomérico: las secuencias teloméricas repetidas forman estructuras muy ordenadas, como T-Loops, horquillas y G-quadruplexos, los sustratos preferidos para BLM, que deben disolverse para permitir la replicación adecuada del ADN telomérico.La BLM también participa en el mantenimiento de la integridad de los telómeros por la vía de alargamiento alternativo de los telómeros (ALT), la cual es independiente de la vía de la telomerasa. 
  • DNA ribosomal: las secuencias repetidas del DNA ribosomal se replican de manera única. La alta actividad de transcripción de estas regiones del genoma induce la formación de un R-Loop que si no se resuelve provoca rupturas del DNAr. BLM podría estar implicada en el mantenimiento de la integridad de este DNA, seguramente desenrollando las estructuras complejas  que se formen.

B. RECOMBINACIÓN HOMÓLOGA

BLM interacciona con varios componentes de la maquinaria de recombinación homóloga (HR). La vía de la recombinación homóloga utiliza una secuencia homóloga como plantilla para reparar el ADN dañado o reiniciar las horquillas de replicación bloqueadas. BLM es una de esas proteínas necesarias que actúan en la replicación y recombinación desempeñando funciones tanto pro como anti-recombinogénicas.

  • Reanuda el bloqueo de las horquillas de replicación cuando disuelve las uniones de Holliday.
  • Reparación de la ruptura de la doble hebra: la ruptura de doble hebra es una de las formas más letales de daño en el DNA. En el primer paso, BLM actúa estimulando la actividad nucleasa de la exonucleasa 1 (EXO1) y la helicasa / endoexonucleasa DNA2 para asegurar la resección extensa 5′ de los extremos del ADN generados por la ruptura de doble hebra. Los overhangs creados se recubren rápidamente con la proteína RPA para estabilizarlas y protegerlas de la degradación (BLM tiene actividad recombinasa en este paso). 

El overhang invade la hebra opuesta para buscar un fragmento homólogo a partir del cual pueda darse la reparación. Esta invasión de la hebra es seguida por la síntesis de ADN en el extremo invasor y conduce al desplazamiento de la hebra paralela, formando un D-Loop.

Si la homología encontrada es suficiente, BLM permitirá que continúe la reparación por la vía de recombinación homóloga. Las etapas finales de esta reparación se llevarán a cabo mediante la resolución de las uniones de Holliday (HJs), ya sea por el complejo disolvasoma BLM sin recombinación (actividad anti recombinasa de BLM), o por resolución, lo cual generará productos de recombinación. 

El complejo BLM disolvasoma está compuesto por diversas enzimas: la BLM, topoisomerasa IIIα y y RMI1 y RMI 2,  para procesar las uniones dobles de Holliday (dHJ) generadas durante el paso de invasión de la cadena de la vía de reparación por disolución.

  • Vía alternativa de alargamiento de telómeros (ALT): en algunos cánceres se utiliza esta vía, en la que BLM  interacciona con los telómeros y otras proteínas de esta vía.

Imagen 4. BLM en la recombinación homóloga. Extraída de https://pubmed.ncbi.nlm.nih.gov/33736941/ 

C. TRANSCRIPCIÓN

BLM desenrolla los dúplex híbridos de ARN-ADN, conocidos como R-Loop, y G4, en sitios transcripcionalmente activos, específicamente después del daño del ADN. La resolución de estas estructuras es esencial para permitir el acceso de la maquinaria de reparación a las lesiones inducidas, asegurando así una reanudación normal de la transcripción.

Imagen 5. Funciones de la BLM. Imagen rescatada de https://pubmed.ncbi.nlm.nih.gov/33736941/ 

3. ESTRUCTURA DE LA BLM

El gen que codifica para la proteína BLM es un gen de 1417 aminoácidos ubicado en el cromosoma 15q26.1, que posee una actividad helicasa dependiente de ATP 3′ → 5 ‘. Su expresión está muy regulada en el ciclo celular, expresándose niveles más altos en las fases S y G2.

La proteína BLM, como ya hemos mencionado, es una helicasa de tipo RecQ, cuya función se basa en desenrollar el DNA, una actividad que utiliza ATP para moverse a lo largo de una hebra simple y para romper los enlaces de hidrógeno que mantienen unidas las dos cadenas de DNA. Su actividad dependiente de ATP es muy relevante en procesos tales como la replicación, transcripción, recombinación y reparación del ADN, por lo que estas proteínas presentan un sitio de unión a ATP. Las RecQ pertenecen a la superfamilia de las helicasas SF2 y juegan un papel crucial en el metabolismo del ADN, asegurando así el mantenimiento de la integridad y la estructura del genoma.

Sin embargo, el dominio helicasa no es suficiente para la actividad de la BLM. Asociado a este dominio helicasa está el dominio RQC, y ambos forman el núcleo catalítico de la BLM. El dominio helicasa es el más conservado en la familia de las RecQ, ya que es común a las proteínas de la familia SF2.

Este RQC se compone de un motivo de unión  Zn 2+  y un dominio de “alas hélice de ADN” (winged helix domain) que conjuntamente actúan como el lugar de anclaje a la doble hebra del DNA. En este motivo se encuentra también una pinza-β que actúa insertando el complejo en el DNA y causando la separación del dúplex. El extremo C-terminal del RQC es el dominio “helicasa y ribonucleasa D C-terminal (HRDC)” que no se une directamente al DNA pero puede ayudar en las actividades helicasa y ATPasa. Es necesario para las disoluciones de las uniones de Holiday.  

El extremo N- terminal de la proteína presenta la región de reconocimiento (la BLM forma un complejo con numerosas enzimas como son la topoisomerasa IIIα, RM1 y RM2, RPA…). La combinación de la actividad de desenrollamiento y reconocimiento cataliza la función del intercambio entre cadenas, que requiere promover previamente la disolución de las uniones holiday o el retroceso de las horquillas de replicación estancadas. No se han encontrado mutaciones que causen el síndrome de Bloom fuera de los dominios de RQC y helicasa. 

Los miembros de la familia RecQ tienen siete motivos helicasa conservados, insertados entre dominios N-terminales y C-terminales únicos de tamaño variable. Existen cinco RecQ en humanos, las cuales tienen un dominio de helicasa estructuralmente conservado que contiene cajas Walker A y B y una caja DEAH que funciona en el desenrollamiento, siendo este dependiente de ATP y Mg2 +. Otros dominios como el RQC (RecQ C-terminal) y HDRC también son comunes a las proteínas de esta familia.

Estudios recientes basados en diversas bases de datos hacen ver que existe un pequeño dominio de unión a ácido nucleico en la región C-terminal de todos los miembros de la familia RecQ, lo que sugiere características comunes de reconocimiento de ADN en las helicasas. 

Las helicasas RecQ se pueden clasificar en 2 grupos: el grupo que contiene las proteínas WRN, BLM, RecQ4, Sgs1 y Rqh1 cuyos tamaños van desde 1208 a 1447 aminoácidos ácidos, y el grupo que contiene las proteínas RecQL y RecQ5 con 410 a 649 aminoácidos y que se componen prácticamente del dominio helicasa central. Cabe destacar que, como podemos visualizar en la imagen, las proteínas BLM, WRN, RecQL y RecQ5, presentan una señal de localización nuclear (NLS) en la región C-terminal.

Imagen 6. Proteínas de la familia de la RecQ. Imagen rescatada de: https://pubmed.ncbi.nlm.nih.gov/33736941/

Imagen 7. Estructura de la BLM. Imagen rescatada de https://pubmed.ncbi.nlm.nih.gov/28232778/ 

Además se sabe que hasta hoy solo RecQ, RecQL, BLM, WRN y Sgs1 tienen una actividad ADN helicasa dependiente de ATP 3′-5 ’. La helicasa WRN tiene una actividad enzimática exonucleasa 3′-5 ′ adicional dentro de su región N-terminal.

Imagen 8. Se representan las proteínas con las que interactúa la proteína BLM, la cual se compone de los dominios de núcleo de ATPasa / helicasa, RQC y HRDC. Podemos ver las proteínas clave involucradas en diferentes vías de reparación e interactuando con BLM junto con sus posiciones de unión a BLM. Extraída de: (https://www.frontiersin.org/files/Articles/634789/fgene-12-634789-HTML/image_m/fgene-12-634789-g001.jpg).

4. PATOLOGÍA Y CÁNCER

El cáncer es la complicación médica más frecuente y grave que aparece en pacientes con Síndrome de Bloom, y suele llevar a la muerte. En este síndrome se dan una amplia variedad de tipos de cáncer y ubicaciones anatómicas en personas con SB. Las células con mutaciones en BLM conducen a la acumulación de DNA con daños con alta sensibilidad hacia varios fármacos quimioterapéuticos.

La distribución de los cánceres es parecida a la que sucede en la población general, pero ocurren a edades más tempranas y una sola persona puede experimentar múltiples cánceres. En esta enfermedad los más frecuentes son la leucemia y el linfoma, y dentro de los tumores sólidos los más comunes son los cánceres del tracto digestivo, en particular el adenocarcinoma del tracto intestinal superior e inferior. Los carcinomas de células de cabeza y cuello también se han diagnosticado con frecuencia, especialmente en la base de la lengua, la epiglotis y el esófago. 

Como dato curioso cabe destacar que la población judía Ashkenazi tiene alta prevalencia de cáncer colorrectal precisamente por la mutación en este gen. De acuerdo con su función de cuidar el genoma, se han visto mutaciones en el gen BLM asociadas con el riesgo de cáncer colorrectal. Aproximadamente el 0,11% de pacientes presentan  la mutación heterocigótica BLM que confiere un riesgo de penetrancia de bajo a moderado para desarrollar cáncer colorrectal., y entre estos pacientes se encuentran personas con ascendencia judía asquenazí, portadores de alta frecuencia de la mutación heterocigótica BLMAsh.

Múltiples estudios muestran que la proteína BLM tiene una implicación directa en la regulación de varios oncogenes y genes supresores de tumores . BLM potencia la degradación y alteración de la función del factor de transcripción oncogénico c-Jun, moderando así el efecto  de este último en la transformación neoplásica.

Es más, el gen c-Myc, que regula la transcripción de muchos genes fundamentales y se sobreexpresa en varios tipos de cánceres, también es un objetivo de BLM. De hecho, BLM disminuye los niveles de c-Myc y retrasa la iniciación del tumor en múltiples líneas de células de ratón. Es por esto que muchos autores denominan a la proteína como una “cuidadora de la supresión de tumores”

El efecto directo y específico de la función de BLM en la prevención del cáncer ya que BLM trabaja en conjunto con p53 para efectuar la apoptosis; por lo tanto, previene la transformación tumoral. Se han realizado múltiples estudios en células con síndrome de Bloom en los que se identifican anomalías tanto en la acumulación como en la activación de p53 inducida por daños en el ADN.

Imagen 9. Mecanismos implicados en neoplasia de BLM. Imagen rescatada de https://www.frontiersin.org/files/Articles/634789/fgene-12-634789-HTML/image_m/fgene-12-634789-g004.jpg

Además de la predisposición al cáncer que tienen los individuos que presentan mutaciones en la BLM, también existe esta predisposición en pacientes con sobreexpresión de la BLM. En estos últimos casos, hay una eficiencia muy alta de reparación así como de recombinación por la vía homóloga, lo que se traduce en una acumulación del daño en el DNA e hiper recombinación. 

5. SISTEMA INMUNE

Se afirma también que la proteína BLM está involucrada en el desarrollo y mantenimiento del sistema inmune. En pacientes con el síndrome de Bloom se observan niveles de inmunoglobulinas IgM e IgA anormales y de IgG reducidos. Con los niveles disminuidos de BLM, las células precursoras linfoides de la médula ósea y las células B maduras del bazo y la cavidad peritoneal disminuyen significativamente, e incluso se ven fallos en el desarrollo de las células T.

Debido a la acumulación de ADN dañado en células deficientes en BLM, también se ha observado una mayor expresión del gen inflamatorio estimulado por interferón y niveles aumentados en sangre periférica. BLM juega un papel indispensable en el desarrollo, proliferación, mantenimiento, estabilidad y función de las células inmunes y contribuye a la inmunodeficiencia en pacientes afectados por BS.

6. MÉTODOS DIAGNÓSTICOS Y TRATAMIENTO

Debido a que este síndrome es raro, no existen pautas de tratamiento basadas en evidencias científicas. Entre las principales preocupaciones destacan las anomalías de la piel, los problemas de crecimiento y nutrición, las anomalías endocrinológicas y el riesgo de neoplasias malignas, que son la mayor causa de muerte.

Como remedio para los problemas de crecimiento se emplean preparados y alimentos hipercalóricos. Además el tratamiento con hormona de crecimiento podría mejorar el crecimiento lineal, aunque su uso es controvertido por algunos estudios que identifican un mayor riesgo para el desarrollo de cáncer en niños.

En algunos casos en los que hay una disminución de los niveles de inmunoglobulinas y se sufren infecciones, se pueden aplicar antibióticos y tratamiento con inmunoglobulinas intravenosas o subcutáneas.

Resulta fundamental el cuidado de la piel con cremas y protectores y su vigilancia en cuanto a la aparición de posibles cánceres.

La enfermedad sigue un patrón de herencia autosómico recesivo y es por eso que se ofrece consejo genético a las parejas en riesgo cuando ambos son portadores de la mutación, informándoles de un riesgo del 25% de tener un hijo afectado en cada embarazo.

El diagnóstico se intuye clínicamente en base a la identificación de síntomas propios del síndrome de Bloom y se confirma mediante la identificación de variantes patogénicas bialélicas del gen BLM en las pruebas moleculares. También puede confirmarse mediante un análisis citogenético que identifica un mayor número de intercambios entre cromátidas hermanas (esta prueba se puede realizar en el embarazo) o mediante técnicas de secuenciación y deleción/duplicación de BLM.

BIBLIOGRAFÍA

–        Ababou M. (2021) Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab. 2021 May;133(1):35-48. doi: 10.1016/j.ymgme.2021.03.003. Epub 2021 Mar 10. PMID: 33736941.

–        Cunniff C, Bassetti JA, Ellis NA. (2017) Bloom’s Syndrome: Clinical Spectrum, Molecular Pathogenesis, and Cancer Predisposition. Mol Syndromol. 2017 Jan;8(1):4-23. doi: 10.1159/000452082. Epub 2016 Nov 5. PMID: 28232778; PMCID: PMC5260600.

–        Kaur E, Agrawal R and Sengupta S (2021) Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front. Genet. 12:634789. doi: 10.3389/fgene.2021.634789




Científicos e investigadores. Una reflexión contra la excelencia.

Alguna vez me han preguntado por qué siempre distingo entre investigador y científico, y cual es la diferencia.

Hay una respuesta corta y rápida: Ser científico es una condición, una forma de vida. El científico lo es por cómo piensa, qué se pregunta y cómo interroga a la realidad. La Ciencia es una forma de gobernar el pensamiento, junto con una gran cantidad de conocimiento. Investigador hace referencia a la aplicación, a la parte práctica. A la acción de investigar. El investigador no tiene por qué ser un científico.

Entonces yo hago la siguiente reflexión, que espero sirva a los nuevos científicos que llegan a mi clase y comienzan en este mundo:
Actualmente, a lo largo de la carrera nos educan en la competición y nos inundan con el mito del talento, la excelencia y con la «orientación al logro» (digo actualmente, porque cuando yo estudié no había nada de eso: los profesores, salvo alguna excepción, eran meros autómatas que transmitían una información desde unos papeles amarillos por el uso curso tras curso y con quienes teníamos mínima interacción).

Constantemente estamos sometidos a lo que J. Krishnamurti llamaba la «violencia de la comparación«: el fracaso del otro como medida de mi propio logro. Hay que sacar mejor nota que el otro, hay que conseguir la beca antes que el otro, hay que publicar más artículos que el otro, hay que conseguir el contrato compitiendo con el otro; ser el primero en la clase, la oposición, el primero en publicar algo, etc.

Todos los seres humanos desean poder, riqueza, posición social. El deseo de poder se expresa de muchos modos: está en el profesor, la pareja, en un estudiante respecto de otro. Este deseo de posición dominante es una de las formas de agresividad del hombre. La agresividad y el sometimiento a ella pervierten toda relación a lo largo de la vida. El hombre ha aceptado esto como natural, con todos los conflictos y desdichas que conlleva. Básicamente, en ello se encuentra involucrada la medida -el más, el menos, lo mayor y lo menor- que en esencia implican comparación […]. Ello comienza casi al nacer y continúa a lo largo de la vida-este constante medir el poder, prestigio, riqueza. Esto se fomenta en las escuelas y universidades. Todo su sistema de calificar consiste en una evaluación comparativa. Cuando A es comparado con B, que es brillante, agresivo, inteligente, esa comparación misma destruye a A. Esta destrucción toma la forma de la competencia, la imitación y la conformación a los patrones establecidos por B. Ello engendra antagonismo, celos, ansiedad, miedo, y termina por volverse la condición en la que A vive el resto de su vida, siempre midiendo, siempre comparándose. Esta comparación es uno de los muchos aspectos de la violencia.

– Jiddu Krishnamurti. Cartas a las Escuelas.

El concepto de «excelencia» es distinto en el ámbito científico-académico a como entendemos la palabra en el lenguaje normal. Alguien «excelente» mostraba un conjunto de características mas o menos relativas. Cuando decimos «es una excelente persona», es obvio que es algo relativo al resto de personas. Si decimos que alguien es un «excelente fontanero», claramente, en su profesión, muestra un conjunto de capacidades que nos hace preferirle a otros fontaneros. Pero, pensemos en alguien que es una «excelente persona». ¿cómo cuantificamos eso? ¿haríamos un ranking? ¿cual es la persona más excelente que conoces?. ¿Cómo cuantificamos la excelencia de un fontanero? ¿por el número de obras al año? ¿por las buenas referencias? ¿por la relación calidad-precio?. Seguramente sea difícil medir esa excelencia, incluso para algo aparentemente objetivo, que es cómo trabaja un profesional. Al final es un conjunto de factores muchas veces subjetivos o relativos. Si esto es difícil, ¿vamos un paso más allá y, después de implementar una medida de la excelencia, impedimos que los fontaneros que no la alcancen puedan trabajar?

Nos educan no sólo para cuantificar y valorar el «logro» o el «éxito», la «consecución de objetivos y la excelencia» y en «ser el primero» por encima de todo, sino en la aceptación del sacrificio como algo deseable. Vivimos en una especie de culto al sufrimiento. Se asocia el sufrimiento con ese logro y el disfrute con culpabilidad o pérdida de tiempo. Los investigadores aceptan el sacrificio como parte del trabajo y lo imponen a los más jóvenes. «tienes que ir al extranjero (no por que desees aprender allí, sino como imposición de carrera o para ser mejor que el otro)», «es muy difícil ser investigador y tener familia» «tienes que sacrificar relaciones personales» «tienes que dedicar todo tu tiempo a tu trabajo sin descanso» «si eres investigador, prepárate para pasar penurias económicas y precariedad» «no tengas hijos hasta los 45» «como yo lo pasé mal/trabajé gratis/tuve que exiliarme, tu también debes pasarlo mal/etc.». Hemos llegado a la aberrante asociación «ser investigador» = «sufrir» que aceptamos como algo normal, como parte de la profesión.

Como quien va al gimnasio y asocia el dolor, las agujetas y el cansancio con el avance en sus objetivos. «Cómo me he machacado» dicen. En todo momento se usa una terminología bélica: «hay que luchar por…». Muchas veces pienso en éste perverso pensamiento y recuerdo a mi maestro de Aikido, que no toleraba en el Dojo ninguna expresión de agresividad, dominio, superioridad y ego. Disciplinas como el Aikido o el Yoga nos muestran que la asociación tóxica de dolor y sufrimiento con logro debe terminar: a través de ellas fortalecemos el cuerpo y la mente, mantenemos un cuerpo saludable y mejoramos en el estudio, sin necesidad de competir, ni de sufrir, y llevando una práctica vibrante y agradable con, esencialmente, buenas sensaciones.

En el momento en que te intereses por cuales son «buenos» y cuales «malos» entre tus compañeros, estas abriendo una apertura en tu corazón por donde entrará la malicia. Poner a prueba, competir y criticar a otros te debilita y finalmente te derrota

O-Sensei Morihei Ueshiba

Nos intentan hacer creer que vivimos en una confrontación constante con nuestros compañeros y con nosotros mismos, como seres imperfectos en constante test y prueba, intentando mejorarse y ser mejores que otros. Sea lo que sea que signifique eso. Nos presionan para ser «primero», para ser «antes que», en definitiva, para valorar nuestro éxito en la medida del fracaso que perciben los que están en la lista o el ranking tras nosotros.
Durante todo el tiempo nos lavan el cerebro con términos como «resiliencia», «talento» y «excelencia». Estas tres palabras, indicadores claros de que estamos ante un idiota postmoderno, deberían hacernos saltar las alarmas: «resiliencia» es la capacidad para recuperarse de una agresión o perturbación. ¿debemos prepararnos entonces para ser maltratados?. Si alguien os pide «resiliencia» como cualidad para un trabajo, tened por seguro que os van a tratar mal.

Pero vamos a revelar una parte importante del engaño: «talento» y «excelencia» son los términos usados por burócratas y políticos para justificar la explotación, la competición, la falta de oportunidades y financiación y la falta de derechos. «Sólo concedemos X contratos o proyectos, porque estamos fomentando la excelencia y el talento», cuando en realidad quieren decir «Sólo concedemos X contratos porque no queremos invertir más en Ciencia, os haremos creer que nos basamos en la excelencia, sea lo que sea eso, pero solo vamos a financiar lo que queremos/creemos conveniente/a quien hemos financiado ya previamente y ha tenido resultados (el efecto Mateo)».
Cuando en una convocatoria de proyectos o contratos incluyen la palabra «excelencia», sólo os están diciendo que hay un pedazo de pastel muy pequeño y esperan que los comensales peleen como perros rabiosos por él. Son un engaño, como toda la cultura del talento. Palabrería que crea un ambiente tóxico, lleva a la infelicidad, la frustración y la decepción. Y la frustración o la aceptación del propio fracaso lleva a la desmotivación y a acumular más fracaso según los parámetros de quienes nos están aplicando sus medidas de excelencia. En el momento en el que aceptamos el fracaso, dejamos de esforzarnos. «¿para qué?» es una pregunta habitual, «si no voy a conseguir esa plaza o proyecto».

Estos sentimientos negativos abundan en los jóvenes científicos y son contrarios a los que deben tenerse al hacer Ciencia: el ambiente en un laboratorio debe ser relajado y motivador. La exploración de la Naturaleza es y debe ser gozosa, no debe ser una fuente de sufrimiento o estrés.
Un científico no está interesado en competir, en lograr, en el «talento». Hacemos ciencia porque con ella aprendemos cosas, tenemos experiencias interesantes, vemos la Naturaleza bajo otros ojos y, en definitiva, tenemos una vivencia. No importa lo inteligente que seas, ni tu talento, sea lo que sea eso. La Ciencia es una forma de manejar nuestro pensamiento y enfrentarnos a la realidad. La Ciencia es un modo de relacionarnos con el mundo. Es exploración, aprender y enseñar. Descubrir y transmitir. Parafraseando a Karl Popper, la Ciencia nos interesa porque queremos saber algo del enigma del mundo en que vivimos y del otro enigma del conocimiento humano de este mundo.

Un científico intenta dominar el arte de aprender y, los que tienen la suerte de ser al mismo tiempo científicos y profesores de ciencias, tienen la doble tarea de practicar el arte de aprender y el arte de enseñar.

Pero daré a conocer lo poco que he aprendido para que alguien mejor que yo pueda atisbar la verdad y, en su obra, pueda probar y criticar mi error. Así, me regocijaré a pesar de todo de haber sido un medio a través del cual salga a la luz la verdad.

Alberto Durero

Un investigador os hablará de cuantos «papers» publica y sus cuartiles, cuantos fondos y proyectos consigue, de sus logros, de su talento, de líderes y liderar (otra palabreja postmoderna de moda), de la cantidad de charlas que da y de los sitios y colegas prestigiosos con los que se codea. Vivirá observando baremos, índices de impacto, métricas y rankings. Un investigador no desea el error, porque, durante toda nuestra enseñanza, se nos enseña a temer y odiar el error. A ridiculizar o castigar a quien se equivoca. Un investigador buscará destacar sobre el otro, y aprovechará cualquier posibilidad de promocionarse. Es a lo que nos han enseñado y forma parte del trabajo del investigador científico actual.

Durante la celebración del sexagesimo aniversario de Max Planck, en 1918, Einstein dijo que en el templo de la ciencia hay tres tipos de personas. Muchas se dedican a la ciencia en razón del goce de su poder intelectual superior; para ellos, la investigación es una especie de deporte que satisface su ambición personal. Una segunda clase de investigadores se dedica a la ciencia para conseguir fines exclusivamente utilitarios. Pero, en lo que respecta a la tercera: si el ángel del Señor viniera y sacara del templo a todas las personas que pertenecen a esas dos categorías, quedarían unas pocas personas, entre ellas Planck, y ésta es la razón por la que lo queremos.

Edward O. Wilson. Consiliencia o la unidad del conocimiento

Un científico mas bien os hablará de las cosas que ha visto y aprendido; cuando habla de publicaciones, explica lo que ha publicado, no de dónde lo ha hecho o cuanto ha publicado, o de su impacto; habla de lo que ha experimentado, lo que observa, sus ideas, lo que le ha fascinado en su exploración de la vida y la naturaleza. No le interesará dónde has publicado o con quién trabajas, o si has estado en un centro extranjero de nombre sonoro, sino qué te apasiona, qué preguntas e ideas tienes y qué opinas. Un científico abraza el error, porque el error, que puede saber amargo, madura en el delicioso fruto de la Ciencia y el aprendizaje.

La Ciencia se ha construido sobre la refutación de ideas previas. En el momento en el que el investigador trabaja en la Ciencia en un ambiente de violencia y confrontación, como ocurre en cualquier batalla, un error puede ser fatal. Así, es fácil ver que la construcción y el trabajo de la Ciencia no es compatible con los sentimientos de estrés, competitividad, frustración y miedo al fracaso a los que se someten a los científicos. En el momento en que eres científico (no investigador), no existe el fracaso; existen, mas bien, resultados negativos, refutación de tus ideas previas, resultados que no puedes interpretar y limitaciones, falacias y paradojas cognitivas. Todos estos factores son tan importantes o más para la Ciencia que la verificación de una conjetura o teoría. Es importante por ello, que el científico deje de lado el orgullo y acepte con humildad su verdadera posición de observador y transmisor de conocimiento. Naturalmente, «científico» e «investigador» no son dos categorías absolutas y separadas. Podríamos decir, si acaso, que «investigador» es el trabajo y «científico» una condición, una forma de vida. Todos navegamos entre las dos aguas, salvo excepciones (investigadores que son meros trabajadores y tienen poco de científico y, mas raramente, científicos idealistas empeñados en alejarse de la realidad). A mi me parece, a veces, complicado encontrar el equilibrio.

Quienes os digan que hay que competir, que todo esto que digo es incompatible con tener objetivos, con el esfuerzo, con tener resultados y eso que llaman «éxito», sólo os están engañando o manipulando. Se puede ser un científico y tener disciplina, marcarse objetivos o realizar un gran esfuerzo. La diferencia es que éste esfuerzo no estará motivado por la competitividad, por el miedo al fracaso o por la búsqueda del logro, sea cual se este (ya sea salvar a la humanidad, publicar con alto índice de impacto o satisfacer el placer de recibir elogios), sino motivado por la búsqueda del aprendizaje, por comprender un poquito más un pequeño aspecto de la realidad, por responder y/o plantear preguntas; y también, por qué no, realiza un gran esfuerzo por el pundonor del trabajo bien hecho, por el arte, digamos. Para el científico no hay ciencia pequeña o irrelevante. El investigador desea el impacto, porque le aportará fama y prestigio. Para el científico, toda la ciencia es necesaria e importante. Un dato que aportas puede que no cambie ningún paradigma, pero dentro de 5, 10 o 20 años puede ser el factor clave de un gran descubrimiento. Hay muchos ejemplos de ello, y los profesores deberían hacer hincapié en esa «ciencia pequeña» tan importante. La calidad de la ciencia no se mide con su impacto o según dónde se publica, sino según el modo en que ha sido realizada, según su técnica y discusión y según la veracidad y honestidad de su resultado, da igual si es un «pequeño resultado» o no. Es la velocidad y el simplismo de la sociedad moderna lo que lleva a juzgar la calidad de un resultado científico por el título de la revista en que se publica o según cuanto se cite en los medios.

Eso se aplica a cualquier Ciencia: saber un poco más del mundo en que hemos vivido y el universo del que formamos parte.

Según todos estos factores, un investigador quizá pueda ser mejor que otro. No lo se. Quizá podamos inventar métricas y rankings para decidir artificialmente quien es absolutamente mejor o peor investigador en base a una métrica relativa. Igual que las notas de clase: ¿será mejor biólogo molecular quien haya sacado matrícula en la asignatura de biología molecular?. Igual, simplemente, en esa métrica particular obtuvo un valor mas alto, pero, ¿es mejor o peor? ¿en qué y en base a qué? Igual fue pura casualidad. Igual es un desastre en el laboratorio. O igual no.
Tratar de decidir quién es mejor o peor científico es tan ridículo como observar un parque en el que juegan grupos de niños y tratar de hacer un ranking de los que mejor juegan. «Juanito ha subido al tobogán un 20% más que Carlitos». «Anita sube más arriba en el columpio que el 75% restante de los niños». ¿no os suena ridículo?.

Determina cual de estos niños juega «mejor» y luego establece un ranking de «excelencia». A quien esté el último, no le dejes jugar en el parque. ¿podríamos hacer algo así? ¿cómo?. Con la Ciencia ocurre algo similar.

Podemos intentarlo, claro, pero ellos estarán ajenos a ello, y, si intentamos que entren en nuestro juego de rankings (dando de merendar o un juguete, o permitiendo jugar en el parque sólo al primer cuartil en el número de veces que suban a lo más alto de determinado columpio), solo lograremos arruinar su tiempo de juegos, desmoralizarles y convertir el parque en un campo de batalla. He visto, a lo largo de mi carrera, personas moralmente deshechas por su trabajo como investigadores. Personas inteligentes y con muchas ideas y pasión abandonando la Ciencia. He visto agresiones e intentos de asesinato. Suicidios. Yo mismo he sufrido estrés y depresión causada por mi trabajo. Esto es lo que provocan aquellos que hablan de «talento», «excelencia», «resiliencia», «competitividad», etc. ¿es esto lo que queremos para nosotros, nuestros alumnos y compañeros? ¿donde queda, en éste ambiente de «competitividad por la excelencia» la amabilidad y la bondad?

La bondad solo florece en libertad. No puede hacerlo en el suelo de la coacción bajo ninguna de sus formas, ni bajo compulsión, ni es el resultado de la búsqueda de recompensas. No puede existir cuando hay temor.

Jiddu Krishnamurti

Alguien podría decirnos, «es el sistema». Que no os mientan: el sistema lo hacen personas como vosotros y yo. En nuestra mano está cómo queremos que sea. Podéis enfocar vuestra carrera de dos formas: como un investigador que quiere ser el primero o como un científico que quiere descubrir. En ambos casos haréis básicamente lo mismo (mucho trabajo, burocracia, participar en concursos por plazas y proyectos, intentar publicar papers lo mejor posible…etc.) La diferencia es que, en el primer caso, es muy probable que viváis una vida de frustración, de estar pendientes de rankings y baremos, de lo que hacen otros, de alimentar el ego, de sufrir y hacer infelices a otros. En el segundo caso es posible que lo paséis mal a veces, que sea difícil, que os disgustéis. Pero siempre encontraréis gozo, motivaciones y alegrías. En el primer caso viviréis pensando en el fracaso, en el segundo caso no hay fracaso ni éxito, simplemente viviréis una vida gozosa como científicos, independientemente de dónde estéis en el ranking. Y, recordad algo muy importante: en el mundo de la Ciencia casi todo el mundo es inteligente, y «excelente». Si queréis marcar la diferencia, sed amables, humildes y generosos. Sed científicos, no investigadores.

Los actores se ponen maquillaje y representan la belleza y la fealdad; pero cuando se termina la obra, ¿Dónde están la belleza y fealdad?. Los jugadores de ajedrez compiten por ser los primeros e intentan aventajarse unos a otros en sus movimientos; pero cuando se acaba el juego y se retiran las piezas, ¿Dónde queda entonces la competición?

 Hong Zicheng. Caigentan




Control de calidad de proteínas en el retículo endoplasmático

Por Beatriz Naranjo Martínez, Mª del Carmen Nogales Valenciano y Sara Ortiz Planchuelo. Grado en biología sanitaria – Universidad de Alcalá de Henares

El retículo endoplasmático (RE) es un orgánulo de la célula que regula la síntesis, plegamiento, maduración, estabilización, tráfico y degradación de aproximadamente un tercio de las proteínas totales de la célula. El destino de estas proteínas es ser secretadas por la célula, así como residir en la membrana plasmática, el aparato de Golgi, los lisosomas y el propio RE.

Estas proteínas sufren modificaciones postraduccionales, plegamiento y maduración hasta alcanzar su estado funcional terciario o cuaternario.

El plegamiento ocurre gracias a la intervención de chaperonas y otras enzimas, que reconocen las proteínas desplegadas o mal plegadas y las pliegan para que logren una conformación estable funcionalmente activa. No obstante, este proceso es el punto donde más errores se producen en todo el proceso de síntesis de proteínas. Por ello, el RE posee un sistema de control de calidad del plegamiento, que consiste en exportar únicamente aquellas proteínas plegadas correctamente y dirigir a la degradación las que no lo están, evitando así la acumulación de proteínas aberrantes que puede conducir a la apoptosis.

Un fallo en este control de calidad puede generar múltiples enfermedades relacionadas con el mal plegamiento de proteínas, como diabetes mellitus, hígado graso, neurodegeneración, inflamación y cáncer.

Síntesis de proteínas en el retículo endoplasmático

Las proteínas destinadas al RE comienzan su síntesis en los ribosomas libres en el citosol, donde se traduce, en primer lugar, un péptido señal de 16 a 30 aminoácidos, que contiene un núcleo de aminoácidos hidrofóbicos, que es esencial para su función (Figura 1, paso 1).

Una ribonucleoproteína citosólica, la partícula de reconocimiento de señal (SRP), se une a la subunidad 60S y al péptido señal en cuanto éste emerge del ribosoma (Figura 1, paso 2), de manera que detiene la traducción para que el polipéptido naciente pueda ser translocado al RE.

Este complejo se dirige a la membrana del RE, donde el receptor de la SRP reconoce el extremo de SRP no unido al ribosoma (Figura 1, paso 3). La unión del complejo ribosoma-péptido señal-SRP al receptor de SRP conduce a la apertura del complejo Sec61 o translocón en la membrana del RE, que actúa como un poro acuoso. Esta unión al translocón permite la liberación de SRP por la hidrólisis de GTP, la reanudación de la traducción y la entrada del polipéptido al RE a medida que se va sintetizando (Figura 1, paso 4). Todo este proceso requiere ATP. [1,2,3]

Dependiendo del destino de la proteína naciente, la síntesis continua de forma distinta:

  • Si la proteína se va a secretar, a medida que la cadena polipeptídica se va alargando, pasa a través del canal del translocón hacia la luz del RE, donde el péptido señal es cortado inmediatamente por la peptidasa señal y posteriormente degradado (Figura 1, paso 5). La cadena continúa sintetizándose (Figura 1, paso 6) hasta la terminación de la traducción del mRNA, de manera que se libera el ribosoma (Figura 1, paso 7) y se cierra el translocón (Figura 1, paso 8).
  • Si la proteína va a formar parte de una membrana biológica, poseerá un péptido de señal-anclaje, que posee una región hidrofóbica que le sirve para anclarse a la membrana del RE y no ser escindida. [4]
Figura 1. Translocación cotraduccional de proteínas de secreción al RE. Idea tomada de Biología Celular y Molecular de Harvey Lodish | Editorial Médica Panamericana. Available at: https://www.medicapanamericana.com/es/libro/biologia-celular-y-molecular. Accessed Feb 15, 2021. Creada con BioRender.com.

Plegamiento de proteínas

Una vez el polipéptido emerge del translocón, ha de plegarse para adquirir su conformación funcionalmente activa (estado nativo), la cual es la más estable [5, 6]. Para hacer posible la espontaneidad del proceso, se “ocultan” los residuos hidrófobos de aminoácidos no polares en el núcleo de la proteína y se exponen las cadenas laterales hidrófilas al entorno acuoso. 

Primero se produce el plegamiento co-traduccional temprano, en el cual se forman estructuras secundarias. Una vez la proteína se libera del translocón, se produce el plegamiento postraduccional, que predomina sobre el primero y da lugar a las proteínas funcionales.

El proceso de plegamiento ha de llevarse a cabo en un tiempo biológicamente aceptable. Para ello, se limitan el número de conformaciones que pueden adoptar los polipéptidos, mediante la formación de interacciones hidrofílicas como puentes salinos y enlaces disulfuro [5].

La formación de estas interacciones co‐ y postraduccionales es catalizada por una maquinaria de modificación y plegamiento de proteínas residente en RE, que comprende una red de chaperonas, enzimas glucosilantes, oxidorreductasas e isomerasas que actúan simultánea o secuencialmente [5, 6].

A menudo las proteínas pequeñas con un solo dominio adoptan su estado nativo de manera espontánea, sin necesidad de la intervención de esta maquinaria, al contrario de lo que ocurre en el caso de proteínas con estructuras más complejas que se plegaran más lentamente y, por tanto, requieren de diferentes enzimas para alcanzar su conformación activa en un tiempo aceptable biológicamente [7].  

Chaperonas

Las chaperonas moleculares se definen como «proteínas que interactúan, estabilizan o ayudan a una proteína no nativa a adquirir su conformación nativa, pero no están presentes en la estructura funcional final» [8]. Fueron identificadas por su mayor abundancia después de su exposición al choque térmico, por lo que son conocidas como Hsp, por sus siglas en inglés Heat Shock Proteins [5].

Estos catalizadores moleculares se encuentran en todos los orgánulos y compartimentos en las células encargadas de la síntesis y modificación post-traduccional, dado que se han conservado a lo largo de la evolución [9]. En el RE destacan la Hsp70 BiP (Grp78), la Hsp90 Grp94 (gp96) y las chaperonas de lectina calnexina (CNX) y calreticulina (CRT), que son exclusivas del RE [5]. La mayoría de los factores de plegamiento del RE se unen a Ca2+ y dependen de él para funcionar.

Las chaperonas actúan como enzimas acelerando las etapas limitantes de la reacción de plegamiento, es decir, disminuyen la barrera energética entre el estado nativo y no nativo de la proteína [6]. Para ello, reconocen dominios hidrofóbicos expuestos al medio acuoso, los cuales señalizan que la proteína está mal plegada, es un intermediario de plegamiento o forma parte de un polímero no ensamblado. Una vez reconocidos estos dominios hidrofóbicos, los ocultan y forman interacciones no covalentes con ellos para dar lugar al estado nativo, que es estable contra la agregación multimérica irreversible.

Si la proteína ha alcanzado su conformación nativa, no podrá volver a unirse a las chaperonas, pero si este plegamiento se ha producido de manera incompleta, habrá residuos hidrofóbicos expuestos que permitirán una nueva oportunidad para llevar a cabo el plegamiento correctamente [4].

Así, las chaperonas pueden diferenciar específicamente las etapas de plegamiento para una amplia gama de proteínas y, por tanto, actúan como supervisoras de la calidad del plegamiento proteico [9].

Control de calidad del RE

A pesar de la intervención de las maquinarias de plegamiento proteico, el plegamiento es el punto más propenso a errores desde la transcripción hasta lograr la proteína funcional.

El RE posee una concentración de calcio y un potencial redox mayor que el citosol, lo cual facilita el funcionamiento adecuado de las maquinarias de plegamiento. Esto le otorga la capacidad de realizar un control de calidad del plegamiento, mediante el monitoreo de la cantidad de proteínas mal plegadas en el RE, y un control de cantidad, al eliminar copias excesivas de ciertas proteínas para coordinar su plegamiento con las demandas fisiológicas y patológicas de la célula [9]. 

Este control consiste en detectar aquellas proteínas que tienen defectos de plegamiento o se encuentran en exceso para dirigirlas a vías de degradación, pasando únicamente a la vía secretora aquellas proteínas correctamente plegadas [10].

En RE de mamíferos existen dos mecanismos distintos de control de calidad: la vía de plegamiento general y la vía específica de glucoproteínas [5].

En ausencia de N-glucanos dentro de los primeros 50 residuos de aminoácidos, la proteína naciente se dirige hacia la vía de plegamiento general, de manera que se une primero a la chaperona BiP (Grp78). En presencia de dichos N-glucanos, la proteína se dirige hacia la vía de plegamiento específica de glucoproteínas, de manera que interacciona con las chaperonas calnexina-calreticulina (CNX / CRT) para sufrir procesos de modificación en el oligosacárido hasta alcanzar el plegamiento adecuado. No obstante, debido a la importancia de BiP en la translocación, ésta puede interaccionar primero de manera transitoria con la glucoproteína [11]. Ambos mecanismos actúan de forma coordinada en la maduración proteica para que únicamente sean exportadas las proteínas funcionales.

Cuando las proteínas alcanzan una conformación estable funcionalmente activa, pueden ser exportadas mediante vesículas al aparato de Golgi.

Las proteínas que permanecen mal plegadas tras varios intentos de plegamiento son finalmente retrotraslocadas al citosol para ser degradadas en el proteasoma mediante la vía de degradación asociada al RE (ERAD). En caso de que se formen cuerpos de inclusión proteicos debido a la agregación, éstos son degradados por autofagia mediante la vía de degradación en lisosomas asociada al RE (ERLAD).

Ante condiciones de estrés reticular, la acumulación de proteínas mal plegadas puede superar un umbral crítico, lo cual induce la activación de la respuesta de proteína desplegada (UPR). Este mecanismo trata de promover la supervivencia celular mediante el restablecimiento de la homeostasis, por un lado, controlando la síntesis y degradación de estas proteínas, y por otro, regulando la transcripción de los factores que intervienen en esta proteostasis.

Cuando el estrés del RE es demasiado alto, la UPR puede no ser suficiente para recuperar la homeostasis, de manera que los niveles de proteínas mal plegadas siguen siendo altos y se activan vías pro-apoptóticas para evitar la supervivencia de células aberrantes [7].

Vía de plegamiento general

Como ya hemos mencionado, en la vía general de plegamiento intervienen una chaperona de la familia Hsp70, BiP, y enzimas de plegamiento entre las que destacan las proteínas disulfuro isomerasas (PDI) (PDIA1), y peptidil prolil cis‐trans isomerasas (PPI) [12].

La proteína de unión a inmunoglobulina (BiP) es la chaperona más abundante y versátil de la célula, considerándose el regulador maestro del plegamiento de proteínas en el RE. Entre sus funciones destacan:

  • Interviene en la translocación de cadenas nacientes al lumen reticular.
  • Participa en el plegamiento y la oligomerización de proteínas.
  • Interviene en la preparación de las proteínas no nativas para ser translocadas al citosol y degradas en el proteasoma.
  • Regula la respuesta a proteína desplegada (UPR).
  • Ayuda a mantener la homeostasis del Ca2+, lo cual es fundamental para el plegamiento de proteínas, pues la mayoría de los factores son dependientes de Ca2+ [4, 6].

La actividad ATPasa de BiP está regulada por las proteínas J (ERdj1–7) y factores de intercambio de nucleótidos (Grp170 y Sil1). Los ERdjs actúan reclutando a BiP para realizar diferentes procesos como la traslocación (ERdj1 y ERdj2) (Figura 3, paso 1), el plegamiento (con ERdj3 y ERdj6) (Figura 3, paso 2) y la degradación (ERdj4 y ERdj5) (Figura 3, paso 3a) [8].

Cuando se une ATP al dominio de unión de nucleótidos de BiP, el dominio de unión a sustrato alcanza su conformación abierta, en la cual se une de manera transitoria a las regiones hidrofóbicas que están expuestas en la proteína plegada incompletamente (Figura 2, paso 1). Al hidrolizarse este ATP, se desacoplan los dominios, y este último adquiere su conformación cerrada, uniéndose de forma más estrecha a su proteína sustrato, de manera que facilita su plegamiento (Figura 2, paso 2). Las proteínas ERdj intervienen en ambos pasos, en primer lugar, transfiriendo las proteínas desplegadas y, en segundo lugar, produciendo la hidrólisis de ATP.

El ADP resultante de la hidrólisis es sustituido por ATP gracias a la intervención de factores de intercambio de nucleótidos (Figura 2, paso 3). Esto produce un cambio conformacional que libera la proteína diana, permitiendo que la chaperona sea reutilizada tras la intervención de las proteínas ERdj (Figura 2, paso 4).

Figura 2. Ciclo de la ATPasa BiP. Creada con BioRender.com.

Grp94 es otra chaperona de la familia Hsp90, sin actividad ATPasa, que se une a los sustratos después de BiP (Figura 3, paso 4) y es esencial en muchos procesos en el RE, incluido el plegamiento de proteínas, el control de calidad del RE, la respuesta al estrés y la amortiguación de Ca2+ [5, 6].

Además de estas chaperonas, en el plegamiento intervienen enzimas, destacando las peptidil prolil cis‐trans isomerasas (PPI) y las disulfuro isomerasas (PDI).  

Las peptidil prolil cis‐trans isomerasas (PPI) catalizan la isomerización del enlace peptídico que precede a los residuos de prolina desde la conformación trans a la cis y viceversa. Esto es importante porque, durante el plegamiento, pueden ser necesarias múltiples isomerizaciones cis-trans hasta alcanzar la estructura proteica correcta. Este cambio conformacional es extremadamente lento, por lo que se considera un paso limitante en el plegamiento de proteínas [5].

Las disulfuro isomerasas (PDI) catalizan la formación, reducción e isomerización de puentes disulfuro, que estabilizan la estructura de la proteína nativa y los complejos oligoméricos. Esta reacción también es un paso limitante de la velocidad en el plegado [12].

Cuando las proteínas están bien plegadas, salen del RE y viajan al Golgi (Figura 3, paso 3b), mientras que las proteínas mal plegadas se dislocan al citosol para su degradación [5].

Figura 3. Vía de plegamiento general. Creada con BioRender.com.

Vía de plegamiento específica de glucoproteínas

La mayoría de las proteínas solubles y de membrana que se dirigen a la vía secretora reciben glucanos ligados a N a medida que se traducen y translocan al RE (Figura 4, paso 1). Esto juega un papel crucial en el plegamiento de proteínas en el RE, principalmente a través de su interacción con calnexina (CNX) y calreticulina (CRT) [12, 13].

La N-glucosilación comienza cuando la oligosacariltransferasa (OST), una enzima anclada al translocón, transfiere un complejo de 14 azúcares (2 moléculas de N-acetil-glucosamina, 9 moléculas de manosa y 3 moléculas de glucosa) de un dolicol pirofosfato de la membrana del RE al residuo N de asparagina (Asn) de una secuencia aceptora (N-glicosilación) (Figura 4, paso 2) [5, 7, 12].

Las chaperonas calnexina y calreticulina (CNX / CRT) únicamente se unen a intermediarios proteicos monoglucosilados. Estos intermediarios se logran gracias a la previa escisión secuencial de las dos primeras glucosas de las glucoproteínas por las glucosidasas I y II (Figura 4, paso 3).  

La calnexina es una proteína integral de la membrana del RE y la calreticulina es su parálogo soluble en el lumen de éste. Ambas proteínas poseen un dominio de unión a glucanos similar a lectina y un brazo flexible, el dominio P, que recluta a otras chaperonas. Además, se estabilizan cuando se unen a calcio [4].

A través de sus dominios P, se unen a chaperonas de función específica como ERp57, que es una disulfuro isomerasa (PDI) [14]; ciclofilina B, que es una peptidil prolil cis‐trans isomerasa (PPIasas); y ERp29, que tiene función de chaperona general (Figura 4, paso 4) [7, 12]

Una vez realizada la función de plegamiento, la glucosidasa II recorta la glucosa restante, liberando la proteína del complejo de chaperonas (Figura 4, paso 5).

La glucoproteína glucosiltransferasa (UGGT1) reconoce imperfecciones estructurales en las glucoproteínas que no han conseguido alcanzar su estado nativo tras el plegamiento y monoglucosila de nuevo sus cadenas laterales a partir del donador UDP-glucosa, de manera que pueden unirse otra vez a la calnexina-calreticulina para intentos de plegamiento adicionales (Figura 4, paso 5) [12].

Además, esta proteína monoglucosilada también actúa como sustrato de la glucosidasa II, que compite con UGGT1 con efectos opuestos. La situación en el RE va a condicionar la disponibilidad de estas dos enzimas y, por tanto, el desplazamiento de este equilibrio; por ejemplo, cuando se produce estrés en el retículo aumenta la expresión de UGGT1, por lo que este equilibrio se desplaza hacia la monoglucosilación para que se incremente la tasa de plegamiento.

Por tanto, UGGT1 actúa como un sensor de reconocimiento de proteínas mal plegadas, pues determina si una proteína sale del RE o se retiene para una mayor intervención. [7, 15]

Una proteína puede recorrer el ciclo CNX/CRT numerosas veces hasta que alcanza su conformación nativa. Para salir de este ciclo, el residuo de manosa más externo del brazo que contiene glucosa es eliminado por una manosidasa (Figura 4, paso 6 y 7), evitando que la UGGT1 vuelva a glucosilar.

Si las proteínas consiguen un plegamiento correcto, tras esta escisión, pueden ser exportadas fuera del RE [7]. Sin embargo, si las proteínas no consiguen plegarse adecuadamente tras varios ciclos, se dirigen a la vía de degradación de proteínas asociada a RE (ERAD).

Figura 4. Vía de plegamiento específica de glucoproteínas. Creada con BioRender.com.

ERAD

Cuando las proteínas no adquieren su forma nativa tras varios intentos de plegamiento, las células activan la vía de degradación asociada al RE (ERAD) para evitar que las proteínas se acumulen dando lugar al estrés del RE, el cual pondría en peligro la supervivencia celular. En este mecanismo las proteínas mal plegadas son retrotranslocadas al citosol para su posterior ubiquitinación y degradación por el proteosoma 26S, pues el RE no posee mecanismos de degradación [1].

Vía ERAD de proteínas glucosiladas

Salida del ciclo de calnexina/calreticulina

Se cree que la salida de las glucoproteínas mal plegadas del ciclo de CXN/CRT ocurre cuando la α1,2-manosidasa I del RE (ERManI) corta el residuo de manosa más externo del brazo que contiene glucosa, dando lugar a un residuo de 8 manosas en vez de 9 como el glucopéptido original, de manera que la UGGT1 no puede volver a monoglucosilar. [17, 18, 19].

No obstante, esta desmanosidación también ocurre en las proteínas bien plegadas, por lo que una proteína cuyo N-glicano se recorta de 9 a 8 manosas puede ser sustrato tanto para el transporte a Golgi como para ERAD [20].

Recientemente se ha demostrado que, si la proteína se pliega adecuadamente, se incorpora a vesículas COPII que se dirigen al Golgi. Sin embargo, si no se pliega, las proteínas similares a la α-manosidasa I (EDEM1-3) reconocen el glucano recortado y producen un recorte adicional de manosa que conducirá a los siguientes pasos de la vía de degradación (Figura 5) [18, 20].

A partir de aquí, ERAD ocurre en un proceso de múltiples pasos que comprende el reconocimiento, translocación y ubiquitinación de proteínas ER para la degradación proteasomal citosólica. 

Reconocimiento

La acción secuencial de ERManI y EDEM1 en glicoproteínas mal plegadas da como resultado la exposición de un resto de manosa unido a α1,6, que es reconocido por el dominio receptor de manosa-6-fosfato de las lectinas: osteosarcoma amplificado 9 (OS-9) y proteína transactivada XTP3 (XTP3-B). Estas lectinas junto con los sustratos ERAD son reclutados Sel1L, una proteína asociada con el complejo de retrotranslocación [17, 18].

Translocación y ubiquitinación

Antes de la translocación, las proteínas deben abrir su estructura parcialmente plegada, mediante la ruptura de los puentes disulfuro por disulfuro isomerasas (PDI) y BiP.

En el complejo de retrotranslocación de la membrana del RE destaca la proteína Derlin-1, que forma canales de retrotranslocación en la membrana del RE [20].

Como se ha mencionado, OS-9 y XTP3-B unidos a la proteína desplegada son reclutados por la SEL1L, que se encuentra asociada con Hrd1, una ubiquitina ligasa transmembrana que a su vez está unida al complejo de retrotranslocación.

La ubiquitinación de Hdr1 produce un cambio conformacional en éste, que permite la inserción del polipéptido por el canal Hdr1. A medida que la proteína emerge en el citosol, será poli-ubiquitinado por Hrd1 y las enzimas E2 de conjugación de ubiquitina asociadas. La AAA-ATPasa p97, se recluta en la membrana del RE a través de su asociación con VIMP y proporciona la energía necesaria para extraer las proteínas de la membrana del RE.

Finalmente, la cadena polipeptídica es dirigida hacia este proteasoma por Dsk2 y Rad23, una vez la N-glicanasa ha recortado el glicano restante de la cadena polipétidica para que esta última pueda entrar por el poro del proteasoma dónde finalmente serán degradadas. [20, 21].

Vía ERAD de proteínas no glucosiladas

La vía ERAD de las proteínas no glicosiladas está menos estudiada, pero fundamentalmente difiere del proceso de las glucosiladas en el reconocimiento de los sustratos desplegados (Figura 5). La decisión de dirigir las proteínas a la vía de degradación implica la unión de la proteína a las co-chaperonas pro-degradación: ERdj4, que está asociado con Derlin1, y ERdj5, que actúa como disulfuro isomerasa, induciendo un mayor despliegue de las proteínas para dirigirlas a ERAD, mientras que ERdj4 está asociado con Derlin1 [20].

Figura 5. Vía ERAD de proteínas glucosiladas y no glucosiladas. Creada con BioRender.com.

ERLAD 

Las proteínas mal plegadas que no pueden ser reconocidas y degradadas por ERAD, son autofagocitadas para su degradación en lisosomas asociada al ER (ERLAD) [16, 22].

Estrés del RE

La eficiencia del plegamiento de proteínas en el RE se puede ver alterada por un amplio grupo de alteraciones celulares que conducirán a la acumulación de proteínas mal plegadas dentro del orgánulo que, si supera un umbral crítico, provocará estrés en el RE. Las condiciones que desencadenan este estrés incluyen: falta de nutrientes, hipoxia, mutaciones puntuales en proteínas secretadas que intervienen en el plegamiento o causan agregación y pérdida de la homeostasis del calcio. Así, las células han desarrollado un sofisticado sistema para detectar y responder frente al estrés antes de que peligre su supervivencia [23].

UPR determina el destino celular bajo estrés en el RE

Ante el estrés del RE, las células activan una compleja red de vías de señalización intracelular interconectadas, la respuesta de proteína desplegada (UPR). Esta vía es iniciada por tres transductores ubicados en la membrana del RE, PERK, IRE1 (α y β) y ATF6, que contienen un dominio luminal RE capaz de detectar directa o indirectamente la acumulación crítica de proteínas mal plegadas, de manera que transmiten esta información al citoplasma y al núcleo [23, 24].

La UPR se activa para restaurar la homeostasis del plegamiento de proteínas del RE, pero si el estrés ER no se mitiga y amenaza la supervivencia celular, la UPR desencadena la apoptosis [25]. Esta vía se activa para restaurar la homeostasis del plegamiento de proteínas del RE.

UPR adaptativa: hacia la supervivencia celular

Ante el estrés agudo del RE, la UPR se activa para restaurar la homeostasis del plegamiento de proteínas del RE. Esto implica, en primer lugar, la expansión de la membrana del RE y un aumento en el plegamiento y transporte de proteínas en el RE, y, posteriormente, la atenuación transitoria de la síntesis de proteínas y un aumento en la degradación de proteínas asociadas al RE (Figura 6).

IRE1α

IRE1α (proteína 1α que requiere inositol) es una glicoproteína transmembrana del RE, que posee un dominio citoplasmático con actividad quinasa y RNasa, y un dominio luminal que detecta a las proteínas mal plegadas [4].

Esta proteína mantiene en un estado reprimido en condiciones sin estrés a través de una asociación con BIP (26). Durante el estrés del retículo endoplásmico, BIP se disocia para unirse a las proteínas mal plegadas. Esto conduce a la fosforilación y dimerización parcial de IRE1α, que estimula su actividad RNasa que realizar el corte y empalme de la proteína de unión a caja X (XBP1).

XBP1s controla la transcripción de genes que codifican proteínas implicadas en el plegamiento de proteínas, la degradación asociada a RE (ERAD), el control de calidad de proteínas y la síntesis de fosfolípidos, esta última para dar como resultado una expansión del RE.

IRE1α también media la descomposición del ARNm para reducir la carga de plegamiento de proteínas en el RE, lo que se denomina descomposición dependiente de IRE1 regulada (RIDD). Por otro lado, induce ‘vías de estrés de alarma’, incluidas las impulsadas por la quinasa N-terminal JUN (JNK) y el factor nuclear κB (NF-κB), mediante la unión a proteínas adaptadoras [25].

PERK

PERK (quinasa del RE pancreático)es una proteína transmembrana, que reprime la traducción de proteínas en éste. Esta proteína fosforila la serina 51 de eIF2α (subunidad α del factor de inicio de la traducción 2 en eucariotas) en respuesta al estrés.

La fosforilación de eIF2α, por un lado, reduce la formación de complejos de iniciación de la traducción y, por tanto, lleva a una disminución de la traducción general. Este control permite reducir el estrés del RE mediante la reducción del número de proteínas mal plegadas [9]. Por otro lado, la fosforilación de eIF2α permite la transcripción de ATF4, un factor de transcripción que actúa sobre genes implicados en el metabolismo de aminoácidos, las respuestas frente a estrés oxidativo, la autofagia y la apoptosis [25].

ATF6

ATF6 (factor de transcripción activador 6) es una proteína transmembrana del RE que se localiza en células no estresadas. En las células sometidas a estrés RE, ATF6 es transportado al aparato de Golgi donde es escindido por las proteasas S1P y S2P para producir un fragmento citosólico soluble (ATF6f), que ingresa al núcleo para inducir la expresión de genes diana relacionados con ERAD y el plegamiento de proteínas como los genes que codifican para las chaperonas BiP. (9) [25].

Estas ramas de señalización de la UPR no se activan de forma simultánea, sino que la activación de ATF6α e IRE1α ocurre de inmediato y disminuye con el tiempo, mientras que la activación de PERK sigue a la de ATF6α e IRE1α y permanece durante el estrés crónico del RE.

En condiciones normales, BiP interactúa con los dominios luminales de estos transductores, actuando como regulador negativo de su activación. Ante el estrés del RE, BiP se une a las proteínas mal plegadas, lo que permite su liberación de los transductores. La liberación de BiP de IRE1 y PERK permite su homodimerización y activación, mientras que su liberación de ATF6 permite el transporte de éste al compartimento de Golgi para la proteólisis intramembrana regulada. Esta activación regulada por BiP proporciona un mecanismo directo para detectar la capacidad de plegamiento del RE. Además, las proteínas mal plegadas pueden actuar como ligandos activadores para estos sensores de estrés a través de la unión directa al dominio luminal de IRE1α y PERK.

Estos vías de transducción actúan como bucles de retroalimentación homeostática para atenuar el estrés del ER, de manera que, si tiene éxito en reducir la cantidad de proteína mal plegada, la señalización de la UPR se atenúa y la célula sobrevive.

Figura 6. UPR. Las proteínas transmembrana localizadas en el retículo endoplásmico IRE1, PERK y ATF6 detectan la carga de proteína desplegada en la luz del orgánulo, actuando como receptores de estrés. Transducen la señal del RE al núcleo para regular la transcripción y la síntesis de proteínas. En conjunto, producen la respuesta de la proteína desplegada (UPR). Creada con BioRender.com.

Algunos factores ambientales, el envejecimiento y mutaciones genéticas puede dar lugar a un mal funcionamiento de la UPR, lo cual se ha demostrado que induce enfermedades relacionadas con el plegamiento anómalo de proteínas como diabetes, ateroesclerosis, neurodegeneración, inflamación y cáncer.

UPR terminal: hacia la muerte celular

Ante el estrés del RE prolongado, las respuestas adaptativas pueden resultar insuficientes para restaurar la homeostasis del plegamiento de proteínas, de manera que la UPR activa una vía de señalización alternativa proapoptótica, que induce la muerte celular para evitar la supervivencia de células aberrantes.

Aun no se conocen los detalles moleculares de esta vía, pero hay evidencias de que las dos quinasas UPR, PERK e IRE1α, involucran un conjunto de salidas pro-apoptóticas que conducen a la degeneración celular si el estrés del RE no se puede resolver (Figura 7) [10, 27]. 

La hiperactivación de PERK conduce a la pausa prolongada de la traducción de proteínas, debido a la fosforilación de eIF2α, lo cual es incompatible con la supervivencia. Además, PERK induce la transcripción de ATF4, que activa a su vez la transcripción de CHOP (proteína homóloga C/EBP), un factor de transcripción que media la muerte celular mediante la regulación de la expresión de varias proteínas:

  • Inhibe la expresión de las proteínas anti-apoptóticas de la familia BCL-2, lo que conduce a la activación de proteínas BH3. Éstas desactivan las proteínas protectoras mitocondriales y las proteínas pro-apoptóticas BAX y BAK para que permeabilicen la membrana mitocondrial externa.
  • Activa la expresión de ERO1α (ER oxidorreductina 1), que crea un entorno hiperoxidante en el RE, perjudicando el plegamiento de proteínas y, por tanto, aumenta la señal a favor de la muerte.
  • Activa la expresión de GADD34 (proteína inducible por daño del ADN), que media la desfosforilación de eIF2α, de manera que se reanuda la síntesis de proteínas, aumentando la carga de proteínas en el RE. Por tanto, se forma un bucle de retroalimentación al amplificar la señal tóxica a favor de la muerte [28].

La hiperactivación de IRE1α fosforilada conduce a la formación de oligómeros en vez de homodímeros, lo cual tiene los siguientes efectos:

  • Su dominio RNasa tiene afinidad por los sustratos RIDD (desintegración de ARNm dependiente de IRE1), actuando como una endonucleasa de cientos de ARNm localizados en ER, de manera que agota la carga de proteínas en el RE y los componentes de la maquinaria de plegamiento, empeorando aún más el estrés. 
  • La actividad RNasa reduce los niveles de microARN que normalmente reprimen dianas pro-apoptóticas, como la proteína pro-oxidante TXNIP (proteína que interactúa con tiorredoxina), cuyo aumento activa el inflamasoma y una vía pro-apoptótica dependiente de Caspasa-1.
  • Recluta TRAF2 (receptor 2 asociado al receptor del factor de necrosis tumoral), que activa ASK1 (quinasa 1 reguladora de la señal de apoptosis). Ésta activa a su vez JNK (quinasa terminal c-Jun NH2) y MAPK (proteína quinasa activada por mitógenos p38) que, mediante fosforilación, activan la BH3 pro-apoptótica e inhibe la BCL-2 anti-apoptótica [10, 27].
Figura 7. UPR terminal. IRE1α y PERK activan factores pro-apoptóticos e inhiben factores anti-apoptóticos ante el estrés agudo en el RE. Creada con BioRender.com.

Bibliografía

(1) Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016 -01;73(1):79-94.

(2) Brodsky JL. Translocation of proteins across the endoplasmic reticulum membrane. Int Rev Cytol 1998;178:277-328.

(3) Zapun A, Jakob CA, Thomas DY, Bergeron JJ. Protein folding in a specialized compartment: the endoplasmic reticulum. Structure 1999 -08-15;7(8):173.

(4) Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006 -05-05;125(3):443-451.

(5) Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016 -06;17(6):615-638.

(6) Redondo Juárez P. Fallos en el control de calidad en la síntesis de proteínas: origen de enfermedades raras. Mistakes in quality control of protein synthesis: the origin of rare diseases 2016.

(7) Lamriben L, Graham JB, Adams BM, Hebert DN. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016 -04;17(4):308-326.

(8) Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 2009 -06;16(6):574-581.

(9) Fu XL, Gao DS. Endoplasmic reticulum proteins quality control and the unfolded protein response: the regulative mechanism of organisms against stress injuries. Biofactors 2014 Nov-Dec;40(6):569-585.

(10) Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control. Molecular cell 2018 Jan 18,;69(2):169-181.

(11) Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000 -04-14;288(5464):331-333.

(12) Kozlov G, Gehring K. Calnexin cycle – structural features of the ER chaperone system. FEBS J 2020 -10;287(20):4322-4340.

(13) Price JL, Culyba EK, Chen W, Murray AN, Hanson SR, Wong C, et al. N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 2012;98(3):195-211.

(14) Oliver JD, Roderick HL, Llewellyn DH, High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999 -08;10(8):2573-2582.

(15) Soldà T, Galli C, Kaufman RJ, Molinari M. Substrate-specific requirements for UGT1-dependent release from calnexin. Mol Cell 2007 -07-20;27(2):238-249.

(16) Fregno I, Molinari M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Critical Reviews in Biochemistry and Molecular Biology 2019 March 4,;54(2):153-163.

(17) Wang Q, Groenendyk J, Michalak M. Glycoprotein Quality Control and Endoplasmic Reticulum Stress. Molecules 2015 -07-28;20(8):13689-13704.

(18) Roth J, Zuber C. Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2017 -02;147(2):269-284.

(19) Caramelo JJ, Parodi AJ. Getting in and out from calnexin/calreticulin cycles. J Biol Chem 2008 -04-18;283(16):10221-10225.

(20) Oikonomou C, Hendershot LM. Disposing of misfolded ER proteins: A troubled substrate’s way out of the ER. Mol Cell Endocrinol 2020 -01-15;500:110630.

(21) Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 2018 -08;43(8):593-605.

(22) Grumati P, Dikic I, Stolz A. ER-phagy at a glance. J Cell Sci 2018 -09-03;131(17).

(23) Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011 -11-25;334(6059):1081-1086.

(24) Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016 -01-21;529(7586):326-335.

(25) Liu CY, Kaufman RJ. The unfolded protein response. J Cell Sci 2003 -05-15;116(Pt 10):1861-1862.

(26) Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012 -01-18;13(2):89-102.

(27) Oakes SA, Papa FR. The Role of Endoplasmic Reticulum Stress in Human Pathology. Annu Rev Pathol 2015;10:173-194.

(28) Nam SM, Jeon YJ. Proteostasis in the Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019 -11-14;11(11).




El sistema de ubiquitinas y la eliminación de proteínas

Ignacio Moratilla Rivera y Miryam Muñoz Martín

3º Biología Sanitaria

Introducción:

Si pensamos en degradación de materiales en la célula en general, siempre nos viene a la cabeza los lisosomas como máximo exponente de esta función. No vamos a negar su imprescindible papel en las células, pero tampoco es el único responsable de realizar estas funciones.

Existe otro sistema que es el responsable de la degradación de proteínas citosólicas contribuyendo a la proteostasis celular. Este sistema está constituido por unas pequeñas proteínas denominadas ubiquitinas y unos complejos proteicos conocidos como proteosomas. Ambos junto a otras enzimas constituyen un proceso en cadena en el que finalmente las proteínas serán degradas.

Este mecanismo no solo se va a limitar a la eliminación de proteínas mal plegadas o aberrantes, sino que también va a desempeñar un papel crucial en la regulación del ciclo celular y fallos en él pueden llevar a cataclismos fisiológicos serios como el Parkinson, Alzheimer o enfermedades cardiovasculares.

Ubiquitinas: las proteínas omnipresentes.

Las ubiquitinas son unas proteínas monoméricas que se encuentra presenten en todos los organismos eucariotas (de ahí su nombre, ya que son ubicuas). No se han encontrado en procariotas, pero tienen proteínas con motivos estructurales similares, ThiS y MoaD que son sus posibles antecesores. Una evidencia de ello son las dos glicinas del extremo C-terminal, que están presentes en estas proteínas y en las ubiquitinas.

Lo que más llama la atención es su alto grado de conservación, lo que pone en evidencia su importante papel dentro de la célula. Presentan 76 residuos de aminoácidos, y el ser humano solo se diferencia en 3 de estos con las levaduras.

Estas pequeñas proteínas pueden ser vistas como “chivatas” ya que marcan por unión covalente las proteínas que deben ser degradas en proteosomas.

El residuo que produce la unión es una Gly situada en el extremo C-terminal y que es común en todas las ubiquitinas. La glicina se une a la proteína diana por un enlace isopeptídico, que se diferencia del enlace peptídico en que uno de los grupos (sea NH2 o COOH) forma parte de un grupo R. En este caso ocurre entre en el grupo COOH de la Gly terminal con el grupo NH2 de la cadena lateral de una Lys de la proteína diana en gran número de ocasiones, pero también se ha visto que pueden unirse con grupos tiol de la Cys y grupos hidroxilo de Ser y Thr.

Figura 2: Representación tridimensional de la disposición de la Gly y Lys formando el enlace isopeptídico. Esta unión permitirá el engarzamiento con la proteína diana. Imagen realizada con Molecular Constructor y BioRender

Las ubiquitinas no actúan solas en los procesos de marcaje de las proteínas a degradar, sino que estás se unen unas con otras formando cadenas. A este proceso se le conoce como poliubiquitinación y es clave para el reconocimiento de la proteína en el proteosoma. En la formación de la cadena cada eslabón de unión está formado por una Lys de la ubiquitina proximal y la Gly C-terminal de la distal. 

A parte de las ubiquitinas, dentro de la célula podemos encontrar unas proteínas muy similares denominadas modificadores similares a ubiquitinas o Ubl (ubiquitin-like modifer proteins). Estas a parte de tener mecanismos comunes de unión con Lys, las Gly C-terminal y producir modificaciones en las proteínas, tienen un plegamiento casi idéntico al de la ubiquitina. 

Proceso en cadena: E1, E2 y E3.

Hasta que la ubiquitina llega a marcar la proteína a degradar, tienen que actuar una serie de enzimas que la activen y unan. 

E1: ubiquitina activasa

Esta proteína es la responsable de activar la ubiquitina mediante la unión a su extremo C-terminal de un residuo de cisteína (enlace tioéster). Para la formación de este enlace se requiere de ATP, que forma un intermediario con la ubiquitina antes de unirse a la enzima. La reacción de adenilación está muy conservada ya que se ha visto también en la proteína MoaD de bacterias.

Figura 3: Representación 3D del intermediario Ubq-AMP en el centro activo de la enzima E1 (PDB: 4NNJ) . Los lazos de colores pastel hacen referencia a la estructura de E1. Imagen realizada con Chimera y BioRender.

El intermediario Ub-AMP se sitúa en el centro activo de la E1, cerca de donde se encuentra la cisteína de unión. La estructura del nucleótido se estabiliza por puentes de hidrógeno con la enzima E1, reduciendo la entropía y favorecer el proceso de formación del enlace tioéster. 

E2: enzima conjugadora

Las E2 unen las ubiquitinas que se habían unida a E1 también con un enlace en un residuo de cisteína. 

Figura 4: Representación tridimensional de la transferencia de la Ubq desde E1 hasta E2 (PDB: 5KNL). La unión de E2 a E1 permite el paso de la ubiquitina por la formación de un nuevo enlace tioéster con un residuo de Cys de E2. Imagen realizada con Chimera y BioRender.

No es una única enzima E2, sino que son varias cada una con diferentes funciones. Estas después serán reconocidas por diferentes. El papel que puede tener E2 se discute, ya que podría ser más sencillo que E3 ligue directamente la ubiquitina desde E1 hasta la proteína diana. 

Como es habitual, los eucariotas preferimos darle un vuelta de tuerca a todos los procesos moleculares. La presencia de E2 constituye un punto de regulación importante en la ubiquitinación y en la especificidad de los sustratos que se etiquetan. 

La cisteína de E2 se encuentra en una hendidura de la estructura en la que debe entrar el complejo E1-Ubq para que se produzca la transferencia de una a otra.

E3: ubiquitina ligasa

La E3 tiene la habilidad de tomar la ubiquitina de la E2 y transferirla a la proteína diana. ¿Quiénes pueden ser estas proteínas dianas? Pues una gran diversidad de ellas. Es posible gracias a la existencia de varias enzimas E3 capaces de unir la ubiqutina a diferentes sustratos. 

Figura 5: El modelo tridimensional pretende mostrar que la enzima E3 presenta un motivo de unión a E2-Ubq (PDB: 5TTE), y después rompe la unión entre ambas para realizar la transferencia de la Ubq hasta una proteína diana del tipo que sea mediante la catálisis del enlace isopeptídico. Imagen realizada con Chimera y BioRender

Dicha unión ocurre entre el C-terminal de la ubiquitina y una lisina de la proteína a degradar. Pero tienen la función también de enlazar unas ubiquitinas con otras para formar cadenas de poliubiquitinas.

Las tres clases de ubiquitina ligasa existentes se diferencian en función de su dominio activo: RING finger, HECT y U-box. Dentro de cada clase a su vez existen subclases, esto permite incrementar la especificidad del reconocimiento de las proteínas que queremos ubiquitinar. Para ello cada tipo de E3 cuanta con dominios de reconocimiento hacia determinadas proteínas y hacia diferentes tipos de E2.

RESUMEN DEL PROCESO ENCADENADO

Figura 6: Resumen del proceso de encadenado. Imagen realizada con BioRender.

Proteosomas: toneles de degradación

El sistema del proteosoma de ubiquitina (UPS) es un complejo multiproteico muy conservado que se encarga de la degradación enzimática de las proteínas. Está formado por una partícula o core central 20S. Este núcleo presenta dos anillos exteriores, con siete subunidades alfa, y dos anillos interiores con siete subunidades beta. Tiene forma de barril, en cuyo interior hay seis centros activos con actividad proteasa. El extremo amino-terminal de las subunidades alfa pueden abrirse para favorecer el paso de la proteína al interior del proteosoma.

Figura 7: Imagen ilustrativa tridimensional de un proteosoma con cada una de las estructuras que lo componen. Imagen realizada con BioRender

Además de la partícula central 20S, presenta partículas reguladoras 19S, compuestas por una tapa y una base. Esta última presenta seis moléculas de ATPasa, cuyos extremos carboxi-terminales encajan entre las subunidades alfa, provocando en ellas el cambio conformacional que abre la compuerta.

La ubiquitinación de las diferentes lisinas de las proteínas desencadena diferentes funciones, desde degradación de proteínas, hasta señales para reparar el DNA, activación de factores de transcripción, endocitosis…

En el proceso de liberación de aminoácidos de la proteína se distinguen dos partes, según la utilización de energía metabólica: hay una parte del proceso que es dependiente de ATP, mientras que otra parte es independiente de ATP. 

Las proteínas son desplegadas por reguladores mediante cambios conformacionales provocados gracias a la hidrólisis de ATP. Después, las proteínas desplegadas son traslocadas a los centros activos con actividad proteasa del núcleo central, dando lugar a pequeños péptidos de tres a quince aminoácidos. Por último, estos péptidos son degradados de forma independiente de ATP por endopeptidasas, carboxipeptidasas y aminopeptidasas.

Figura 8: Proceso llevado a cabo durante la degradación de las proteínas ubiquitinadas. Imagen realizada con BioRender.

Comprender la estructura y el funcionamiento del proteosoma ha permitido conocer su asociación con enfermedades cardiovasculares, diabetes, enfermedades neurológicas y cáncer. El gen que codifica el proteosoma se localiza en el cromosoma 6, cerca de la región donde se codifican las moléculas del MHC-II.

En la actualidad, se han descrito cuatro tipos de proteosomas:

  • Proteosoma constitutivo, clásico o proteosoma 26S. 

Es una estructura grande, macromolecular y multiproteica que tiene carácter enzimático. Se localiza principalmente en el citosol, aunque también en el núcleo de todos los eucariotas, por lo que es el principal complejo proteolítico celular, además, es la misma vía que la célula usa para presentar los péptidos en la superficie en el contexto de MHC-I. 

Reconoce los sustratos de modo dependiente de ubiquitina, de modo mediado por un adaptador y de manera independiente de ubiquitina, en las tres formas requiere de ATP, siendo la vía dependiente de ubiquitina la más usada por microorganismos eucariotas.

  • Inmunoproteosoma

Fue descubierto en células WEHI-3 al ser tratadas con IFN-gamma. Se localiza en las células dendríticas de la médula del timo y en las células epiteliales tímicas medulares. 

Se observó que presentan baja actividad tipo caspasas y una actividad alta de tipo tripsina en comparación con el proteosoma 26S, por lo que podría producir diferentes tipos de péptidos, debido a su tendencia a producir escisión detrás de aminoácidos hidrofóbicos o básicos. Además, optimiza la respuesta efectora frente a determinados antígenos mediante la activación selectiva de clones de linfocitos CD8+.

Su estudio nos permite comprender mejor los mecanismos de aparición de determinados tipos de cánceres y enfermedades autoinmunes.

  • Proteosomas intermedios

Es un proteosoma intermedio entre el proteosoma clásico y el inmunoproteosoma. Se ha observado en tumores del hígado, colon, intestino delgado y células dendríticas. El hallazgo de estos proteosomas intermedios en células dendríticas podría servir como herramienta para la inmunoterapia.

  • Timoproteosoma

Son los proteosomas que se encuentran en el timo. Son necesarios para que pueda llevarse a cabo de manera correcta el mecanismo de selección positiva de los linfocitos CD8+, aunque no se sabe muy bien cómo lo hace. Genera de forma constitutiva ligandos de péptidos alterados durante el mecanismo de selección positiva, lo cual jugará un rol importante en el proceso de la tolerancia inmune.

Importancia del sistema: ciclo celular, enfermedades neurodegenerativas y cáncer. 

Esta función que presentan los proteosomas los hace especialmente importantes a la hora de controlar el ciclo celular. Las kinasas dependientes de ciclinas (CDK) controlan la progresión del ciclo celular tras ser activadas por ciclinas. Cuando ya han llevado a cabo su función es necesario que sean eliminadas. Un mal funcionamiento de estas CDK puede producir un proceso tumoral.

La ciclina será poliubiquitinizada y, posteriormente, degradada por el proteosoma, para que pueda continuar el ciclo celular. En concreto, para que la célula finalice la mitosis, requiere que el componente regulador ciclina B se disocie. En las células de vertebrados esta disociación será dependiente de los proteosomas. 

En el cáncer, la mutación de ciertos genes provoca que las células sean inmortales. En estas células (sea por mutación o activación) habrá una sobreexpresión del proteosoma, el cual estará degradando la ciclina en exceso. Esto lo que provoca es que la célula nunca pare de dividirse. 

Teniendo esto en cuenta, muchos fármacos y quimioterapias tienen como diana la alteración o inhibición de los proteosomas, haciendo que las células entren en apoptosis y el cáncer se frenaría. 

Hay muchos tipos de ciclinas que se unen a CDK específicos, por ello, los CDK-inhibidores (p21 y p27) efectúan su acción cuando hay algún daño celular o cromosómico. Estos CDK-inhibidores inhiben el ciclo celular en estos casos siempre y cuando el proteosoma esté inhibido o regulado, ya que en células tumorales se encontraría sobreexpresado y degradando CDK-inhibidores, impidiendo la regulación de este punto de control. 

Otro punto de control del ciclo celular que da lugar a procesos cancerígenos es llevado a cabo por factores de supervivencia celular (ikB y NFKB). A este nivel, la inhibición del proteosoma también provocaría la apoptosis celular al no haber señales de supervivencia. 

El inmunoproteosoma participa en la regulación del desarrollo de tumores. Se ha observado en pacientes humanos con leimoisarcoma uterino, que carecen de una de las subunidades del inmunoproteosoma. También se ha demostrado su sobreexpresión en leucemias agudas. Por lo que se sugiere que, dependiendo del tipo de cáncer, el inmunoproteosoma puede ser una consecuencia de la enfermedad o puede actuar como un factor de desarrollo. Por ello, se ha convertido en un objetivo importante para luchar contra el cáncer, ya que las células cancerígenas son más subceptibles a los inhibidores de proteosomas. Por ejemplo, en el Mieloma Múltiple, que es un trastorno del plasma sanguíneo debido a la proliferación de células tumorales en la médula ósea, se utilizan inhibidores del proteosoma, estimulando así señales apoptóticas.

Las enfermedades neurodegenativas se caracterizan por la acumulación de proteínas aberrantes que tienden a unirse entre sí. El origen de muchas enfermedades neurodegenerativas se debe a un mal funcionamiento del inmunoproteosoma.

En la enfermedad del Parkinson, las neuronas dopaminérgicas dañadas producen un exceso de proteínas anómalas que interaccionan entre sí formando “placas amiloideas”. La célula trata de eliminarlas mediante la vía ubiquitina-proteosoma. Llegada a una edad, estos mecanismos no funcionan bien, provocando la apoptosis neuronal generando la enfermedad. 

La Enfermedad de Alzheimer es un proceso neurodegenerativo de la neocorteza y el hipocampo. En ella se definen dos tipos principales de lesiones: las placas neuríticas y las marañas neurofibrilares. Ambos representan los productos de un trastorno del plegamiento de proteínas que se caracterizan por la proteolisis. Esta acumulación está relacionada con disfunciones de la actividad proteolítica del proteosoma. 

La acumulación de presenilina-2 debido al mal funcionamiento del proteosoma en enfermedad de Alzheimer puede ser asociado con la acumulación de β-amioloide, lo que dificultaría la función del proteosoma con el consecuente daño celular.

REFERENCIAS

Pickart, C. M. and Eddins, M. J. (2004) ‘Ubiquitin: Structures, functions, mechanisms’, Biochimica et Biophysica Acta – Molecular Cell Research, 1695(1–3), pp. 55–72. doi: 10.1016/j.bbamcr.2004.09.019.

Strous, G. J. and Govers, R. (1999) ‘The ubiquitin-proteosome system and endocytosis’, Journal of Cell Science, 112(10), pp. 1417–1423.

Tanaka, K. (2009) ‘The proteasome: Overview of structure and functions’, Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 85(1), pp. 12–36. doi: 10.2183/pjab.85.12.

Amm, I., Sommer, T. and Wolf, D. H. (2014) ‘Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system’, Biochimica et Biophysica Acta – Molecular Cell Research. Elsevier B.V., 1843(1), pp. 182–196. doi: 10.1016/j.bbamcr.2013.06.031.

Pick, E., & Berman, T. S. (2013). Formation of alternative proteasomes: Same lady, different cap? FEBS Letters, 587(5), 389–393. https://doi.org/10.1016/j.febslet.2013.01.014

Esser, C., Scheffner, M., & Höhfeld, J. (2005). The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. Journal of Biological Chemistry, 280(29), 27443–27448. https://doi.org/10.1074/jbc.M501574200

Cellular protein degradation occurs in different cellular. (n.d.).

Redondo, C. L. (2015). Papel del inmunoproteosoma en enfermedades neurodegenerativas y cáncer Revisión bibliográfica.

Barrio, R., & Izquierdo, M. (n.d.). Aplicaciones terapéuticas de la ubiquitina.

Ubiquitinación, U., Un Un Sistema Sistema Sistema Sistema Sistema De De De De De Regulación Regulación Regulación, U. U., Manuel Zamudio-Arroyo, J., Teresa Peña-Rangel, M., Rafael Riesgo-Escovar María Teresa Peña-Rangel, J., & Rafael Riesgo-Escovar, J. (n.d.).

Erales, J., & Coffino, P. (2014, January). Ubiquitin-independent proteasomal degradation. Biochimica et Biophysica Acta – Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2013.05.008

Zelada Valdés, A. (2019). The proteasome: subtypes and involvement in central tolerance. Revista Cubana de Investigaciones Biomédicas (Vol. 38).

Hershko, A., & Ciechanover, A. (1998). THE UBIQUITIN SYSTEM. Annu. Rev. Biochem (Vol. 67).




Un RNA funcional: XIST, lionización del cromosoma X, corpúsculo de Barr

Ana Belén Alonso Aguado, Irene Chavarría Cubel y Rodrigo Díaz Muñoz. 3º Biología Sanitaria, UAH.

La lionización debe su nombre a la genetista Mary Lyon y consiste en el proceso de inactivación de uno de los cromosomas X en las células de las hembras de mamíferos. Para ello, se producen una serie de modificaciones epigenéticas que conducen a la aparición de la cromatina sexual o corpúsculo de Barr, un cuerpo de heterocromatina adherido a la envoltura nuclear.

Estas modificaciones se desencadenan gracias a un RNA no codificante funcional, producido por el gen Xist situado en la región XIC del cromosoma X, el cual permite el reclutamiento de los factores implicados en la reorganización de la cromatina.

El objetivo de este fenómeno es equiparar los niveles de expresión de los genes ligados al sexo, ya que las hembras presentan dos cromosomas X, mientras que los machos poseen sólo uno (XY).

Antecedentes históricos: corpúsculo de Barr e hipótesis de Lyon

En 1949, Bertran y Barr introdujeron el término cromatina sexual o corpúsculo de Barr tras observar en neuronas del asta anterior de la médula espinal de gatos, junto al nucléolo y bien distinguido de éste, un corpúsculo de cromatina densa (heterocromatina), que estaba adherido a la envoltura nuclear. Esta estructura solo aparecía en hembras, por lo que pensaron que estaría relacionado con el sexo.

En 1959, Susumu Ohno demostró que el corpúsculo de Barr se corresponde con un cromosoma X heterocromatizado y propuso que uno de los dos cromosomas X está inactivo en cada célula somática (células epiteliales, fibroblastos, leucocitos, etc.).

En 1966, Mary Lyon propuso la hipótesis de Lyon para la cromatina sexual o corpúsculo de Barr:

  • La cromatina sexual es genéticamente inactiva.
  • La heterocromatización ocurre en la embriogénesis temprana (hacia el día 16 del desarrollo embrionario en la mujer).
  • El proceso de inactivación del cromosoma X en cada célula de una hembra se produce al azar, es decir, puede inactivarse el cromosoma X materno o paterno.
  • Se trata de un proceso irreversible y heredable, por lo que en un linaje celular se mantendrá el mismo patrón de inactivación.

Como consecuencia, las hembras poseen mezclas de líneas celulares en las que se inactiva el cromosoma X paterno y líneas celulares en las que se inactiva el cromosoma X materno, manifestándose unos u otros factores genéticos ligados al sexo. De esta forma, una hembra heterocigótica para una característica o enfermedad ligada al cromosoma X es un mosaico (ver figura 2).

Además, el corpúsculo de Barr sigue la llamada “regla n-1” (ver figura 1): el número de corpúsculos de Barr de una célula es igual al número de cromosomas X que posee la célula (n) menos 1. Por lo tanto, en todas las células femeninas hay un único cromosoma X activo, mientras que el otro (cariotipo XX) o los otros cromosomas X (cariotipos anómalos) se encuentran heterocromatizados (inactivos). Solo en la meiosis de los ovocitos el cromosoma X heterocromatizado se reactiva, de manera que el patrón de inactivación no se mantiene en la descendencia.

Figura 1. A la izquierda, imagen de Mary Lyon. A la derecha, corpúsculos de Barr al microscopio óptico. (A) Célula femenina con cariotipo 46 XX; presenta un cromosoma X inactivo y, por ende, un único corpúsculo de Barr (señalado con flecha blanca). (B) Célula masculina con cariotipo anómalo 49 XXXXY; presenta tres cromosomas X inactivos y, por tanto, muestra tres corpúsculos de Barr (flechas negras). [13]

Figura 2. Si se ha inactivado el cromosoma X materno (m) o paterno (p) en una célula del embrión en las etapas tempranas del desarrollo embrionario, en todas las células que se originen a partir de ésta se inactivará siempre el cromosoma X materno o paterno, respectivamente. Como resultado, observamos células somáticas formando tejidos mosaicos. [12]

Además, el cromosoma X heterocromatizado no se inactiva por completo (ver figura 3). Se estima que la inactivación afecta al 65% de los genes del cromosoma en todas las células, mientras que un 20% se inactiva solo en algunas células y el 15% consigue escapar de este proceso. Por ello, las mujeres con síndrome de Turner (X0) presentan un fenotipo particular. Si el cromosoma X se inactivara completamente, el fenotipo de estas mujeres sería idéntico al de las mujeres XX.

Figura 3. El esquema muestra los genes que se expresan (azul) y no se expresan (amarillo) en el cromosoma X inactivo (Xi). Estos resultados se obtuvieron mediante RT-PCR. [13]

Ejemplos de fenotipos mosaico ligados al cromosoma X

  1. Color del pelaje en los gatos calicó: el pelaje de las gatas puede ser naranja, negro o parcheado, mientras que el de los gatos es totalmente negro o naranja (ver figura 4).
  2. Enfermedades dermatológicas: algunas de estas enfermedades, como la displasia ectodérmica anhidrótica, presentan un patrón en mosaico.
  3. Isoformas de glucosa-6-fosfato deshidrogenasa: se observó la presencia de una única isoforma en fibroblastos aislados de mujeres heterocigotas para los genes de las isoenzimas A y B. Esto confirmó la hipótesis de Lyon, ya que, si no hubiera inactivación del cromosoma X y ésta no fuese al azar, se deberían observar dos isoformas distintas o la misma en todas las células (suponiendo uno de los alelos dominante).

Figura 4. El color de las gatos calicó depende del gen B que se encuentra localizado en el cromosoma X; el alelo B da lugar a una coloración naranja y el b a una coloración negra. Como los machos solamente tienen un cromosoma X, serán naranjas o negros (B o b). Sin embargo, podremos encontrar hembras homocigotas para el alelo b (todas sus células independientemente del cromosoma que se inactive presentarán el alelo b y serán negras), homocigotas para B (naranjas) o heterocigotas (mosaicos). En este último caso, las zonas naranjas proceden de las células en las que se inactivó el cromosoma X portador del alelo b, mientras que las zonas negras estarán formadas por las células en las que se inactivó el cromosoma X portador del alelo B. Creada con BioRender.

Mecanismo de inactivación del cromosoma X y modificaciones en la cromatina

El proceso de inactivación del cromosoma X consta de cuatro pasos: contaje (cociente entre el número de cromosomas X y autosomas), selección (inactivación del cromosoma X materno o paterno), iniciación de la inactivación y mantenimiento en las siguientes generaciones de un mismo linaje celular.

La heterocromatización se inicia en un punto del cromosoma X llamado XIC (centro de inactivación de X), el cual está situado en el locus multifuncional Xq13 y se extiende hacia ambos extremos del cromosoma (ver figura 5).

Principales elementos de XIC implicados:

  • Gen Xist (transcrito específico para la inactivación de X): produce un transcrito primario que, tras ser procesado por splicing y poliadenilación, da lugar a un RNA no codificante y funcional de 15-17 kb necesario para iniciar el silenciamiento del cromosoma X. Este RNA se dispone a lo largo del cromosoma X que se debe inactivar y recluta una serie de factores, los cuales producen modificaciones epigenéticas que conducen a la condensación de la cromatina. 
  • Locus Xce (elemento regulador del cromosoma X): los genes incluidos en este locus están implicados en los mecanismos de contaje y selección del cromosoma X que se va a inactivar.
  • Genes reguladores de la expresión del gen Xist: activadores (Jpx, Ftx, Rnf12) y represores (Tsix en ratones). El gen Jpx y Ftx producen RNAs no codificantes que activan la expresión del gen Xist, mientras que el gen Rnf12 produce una proteína con actividad ubiquitina-ligasa que parece degradar un inhibidor del gen Xist. Por el contrario, el gen Tsix en ratones produce un RNA antisentido no codificante (complementario al Xist RNA) que inhibe la expresión del gen Xist y es fundamental en la selección del cromosoma X que se va a inactivar.

Figura 5. La figura muestra un esquema de la región XIC en ratones. Creada con BioRender.

En el comienzo del desarrollo embrionario, los factores de pluripotencialidad (NanoG, Sox2 y Oct-4) interaccionan con regiones promotoras del gen Xist, manteniendo bajos los niveles de expresión de este gen, tanto en el cromosoma X de origen materno como en el paterno. Además, estos factores regulan positivamente la expresión del gen Tsix (represor).

Llega un momento, aun en la embriogénesis temprana, en el que se produce un apareamiento transitorio entre algunas regiones de las secuencias XIC de dos cromosomas X. Este proceso parece constituir un mecanismo de recuento de cromosomas X y se repetirá hasta que solo quede uno activo (en caso de cariotipos anómalos con más de dos cromosomas X) (ver figura 6).

Como resultado de la interacción, se produce la activación del gen Tsix (represor) al azar en uno de los cromosomas (“competencia”). Esto conducirá al cese de la expresión del gen Xist en uno de los cromosomas X, mientras que aumentará significativamente en el otro (futuro cromosoma X inactivo o Xi). 

En humanos también se da este apareamiento, pero Tsix produce un RNA antisentido no codificante truncado en el extremo 5’, incapaz de actuar como represor de Xist (en este caso, Tsix parece ser un vestigio evolutivo).

Figura 6. Apareamiento y papel del gen Tsix en la inactivación del cromosoma X en ratones. La expresión de Xist determinará el futuro cromosoma inactivo (Xi), mientras que la expresión de Tsix determinará el futuro cromosoma activo (Xa). Creado con BioRender.

A continuación, comienza el silenciamiento del cromosoma X seleccionado. Para ello, en el futuro cromosoma Xi, el gen Xist produce un transcrito primario que será procesado mediante splicing y poliadenilación para dar lugar a un RNA no codificante funcional que recubre el cromosoma Xi. Este es el Xist RNA, requerido para iniciar y estabilizar la inactivación del cromosoma X, pero no para mantenerla.

Se ha observado que, al eliminar el gen Xist del cromosoma X, éste no se inactiva. Sin embargo, si se coloca en cualquier cromosoma autosómico, automáticamente se produce la inactivación de dicho cromosoma.

Los elementos LINE (elementos nucleares dispersos largos) son secuencias repetidas a lo largo del cromosoma X, principalmente en regiones cercanas a XIC (forman un 30% del cromosoma). Al parecer, estas secuencias favorecen una rápida expansión del Xist RNA, facilitando el proceso de inactivación.

Una vez situado sobre el futuro cromosoma Xi, el Xist RNA recluta directa o indirectamente una serie de factores, como los complejos proteicos Polycomb PRC1 y PRC2,  que reorganizan la cromatina para que ésta adquiera una conformación de heterocromatina facultativa (cromatina condensada transcripcionalmente inactiva).

El mantenimiento de la inactivación del cromosoma X se debe a las siguientes modificaciones epigenéticas que producen la condensación de la cromatina: trimetilación en las lisinas 9 y 27 de la histona H3 (H3K9me3 y H3K27me3, respectivamente), desmetilación de la lisina 4 de la H3 (no H3K4me3), aumento de nucleosomas con la variante macroH2A de la histona H2A, desacetilación de histonas y metilación de las islas CpG (residuos de citosina unidos a guanina) en los promotores de los genes que se van a inactivar (en los genes activos estas islas no están metiladas). Como consecuencia, se producirá una exclusión de la RNA polimerasa II y otros factores, así como una replicación tardía en la fase S (ver figura 7).

Figura 7. Diferencias a escala nucleosomal en las modificaciones epigenéticas del cromosoma X activo (Xa) e inactivo (Xi). RNAPII: RNA Polimerasa II; GTFs: Factores transcripcionales generales; TFs: Factores transcripcionales de unión a intensificadores; CTCF: Proteína aisladora. Enhancer: secuencia intensificadora; Insulator: secuencia aisladora. Nomenclatura modificaciones en el recuadro inferior: ac (acetilación), H (histona), K (lisina), me (metilación), me2 (dimetilación), me3 (trimetilación), ub (ubiquitinación), CpG (islas Cpg), meCpG (metilación islas CpG). [5]

Figura 8. En morado se observan las histonas macroH2A y en azul el DNA, formando un nucleosoma. Las figuras A y B muestran distintas perspectivas. PDB: 2F8N. Creado con UCSF Chimera.

Xist RNA y factores reclutados implicados en la remodelación de la cromatina

El Xist RNA presenta unas regiones formadas por repeticiones en tándem de secuencias consenso, las cuales se clasifican de la A a la F. Las repeticiones A-D y F se encuentran en el exón 1, mientras que las repeticiones E se encuentran en el exón 7 (ver figuras 9, 10 y 13).

Figura 9. (A) El esquema superior muestra los genes Xist y Tsix localizados en la región XIC del cromosoma X. El esquema inferior muestra el Xist RNA tras el splicing, donde se ilustran en amarillo las repeticiones en tándem de secuencias consenso (A-E). (B) Tabla que describe las secuencias repetidas. [8]

Figura 10. Tetraloops AUCG en las repeticiones A de Xist RNA. (A) Estructura secundaria en solución de las repeticiones A del Xist RNA en humanos. PDB: 2Y95. El círculo negro marca el tetraloop AUCG. Las letras de colores indican los nucleótidos del tetraloop, que se corresponden con los indicados en los esquemas B y C. (B) Esquema de la estructura ilustrada en A. (C) Esquema del  tetraloop AUCG, rodeado en la ilustración A con un círculo negro. Creada con BioRender y [15].

Como ya sabemos, Xist RNA inicia el silenciamiento del cromosoma X mediante el reclutamiento directo e indirecto de distintos factores implicados en la remodelación de la cromatina. Estos factores interaccionan con las repeticiones mencionadas anteriormente y se conocen como proteínas de unión al RNA (RBPs). Actualmente, se sabe que las principales RBPs que participan en el silenciamiento son: SPEN (SHARP en humanos), RBM15, hnRNPK y LBR.

SPEN (SHARP en humanos)

SPEN es una proteína con capacidad de interacción con el RNA y otras proteínas gracias a cuatro dominios RRM presentes en el extremo N-terminal y un dominio SPOC en el extremo C-terminal, respectivamente (ver figura 11).

Por un lado, los RRM 2-4 (sobre todo RRM 3) interactúan directamente con las repeticiones A del Xist RNA, mientras que el dominio SPOC recluta el complejo de desacetilación de histonas (NCoR-HDAC3).

De esta forma, se llevará a la desacetilación de histonas en el cromosoma X que se está inactivando. Como ya sabemos, esta desacetilación es una de las modificaciones que favorecen la condensación de la cromatina y, por tanto, la disminución de la accesibilidad de la RNA polimerasa II a los promotores de los genes.

Parece que otra función de SPEN es secuestrar un complejo coactivador de la metiltransferasa H3K4 (KMT2D) mediante el dominio SPOC, de manera que disminuirá la actividad de la metiltransferasa H3K4 (recordemos que la metilación de H3K4 es característica del cromosoma X activo) (ver figura 7).

Además, algunos estudios sugieren que SPEN podría ser responsable de los bajos niveles de RNA polimerasa II (RNAPII) sobre el cromosoma Xi, ya que parece interactuar con esta enzima y algunos cofactores asociados, secuestrándolos.

Figura 11. (A) Dominios SPOC (PDB: 1OW1) y (B) RRM 2-4 de la proteína SPEN (PDB: 4P6Q). Creado con UCSF Chimera y BioRender.

RBM15

RBM15 es una proteína perteneciente a la misma familia que SPEN, por lo que presenta tres dominios conservados RRM (unión a RNA) en el extremo N-terminal y un dominio SPOC (unión a otras proteínas) en el extremo C-terminal. 

Los dominios RRM, al igual que en la proteína SPEN, interactúan con las repeticiones A del Xist RNA. Sin embargo, el dominio SPOC va a interactuar con el complejo proteico METTL3/14 que lleva a cabo la metilación del N6 de adenosinas (m6A). Esta modificación parece estabilizar el RNA, siendo muy abundante en RNAs no codificantes, en este caso Xist RNA, y también en mRNAs.

Asimismo, al igual que en SPEN, el dominio SPOC de RBM15 puede secuestrar otro complejo coactivador de la metiltransferasa H3K4 (SET1B o KMTD2G). De esta forma, disminuye la metilación de la lisina 4 en la histona 3 del cromosoma Xi.

hnRNPK

hnRNPK es otra de las RBPs que interacciona con Xist RNA, en este caso con las repeticiones B/C a través de tres dominios KH (KH1, KH2, KH3) (ver figura 12). Asimismo, a través de su dominio KI cercano al extremo C-terminal, recluta el complejo Polycomb PRC1.

Los complejos multienzimáticos Polycomb catalizan las modificaciones de histonas que conducen a la remodelación de la cromatina.

El complejo PRC1 cataliza la ubiquitinación de la lisina 119 de la histona H2A (H2AK119ub1). Esta modificación promueve la concentración del complejo PRC2 sobre el cromosoma Xi, así como de otros complejos Polycomb. En concreto, el complejo PRC2 produce la trimetilación de la lisina 27 de la histona 3 (H3K27me3).

El mecanismo de acción de los complejos Polycomb aún se desconoce, pero parece que el silenciamiento génico podría ser resultado de:

  1. La ubiquitinación y metilación de histonas podría reclutar otras proteínas implicadas en el silenciamiento de los genes.
  2. Como resultado de la modificación de las histonas, la cromatina se reorganiza de manera que limita la accesibilidad a los factores de transcripción y la RNA polimerasa II.

Figura 12. Dominio KH de hnRNPK. PDB: 1KHM. Creado con UCSF Chimera.

LBR

LBR es un receptor de la lámina nuclear que interactúa directamente con Xist RNA, por lo que se incluye dentro de las RBPs. Esta unión se produce principalmente entre el dominio SR (tramo de arginina-serina) de LBR y los sitios LBS en las repeticiones F de Xist RNA

Por lo tanto, la interacción de LBR con Xist RNA permite la unión del cromosoma Xi a la lámina nuclear (por ello, el corpúsculo de Barr se observa en la periferia nuclear). En estudios recientes, se ha observado que esto podría mejorar la tasa de silenciamiento.

Figura 13. Esquema resumen de  las interacciones de las RBPs con las repeticiones de  Xist RNA (A, F, B, C, D, E), así como los factores reclutados por cada una de ellas que ejercen diversos efectos sobre la estructura de la cromatina y la localización del cromosoma Xi en el núcleo celular. [5]

Xist RNA antagonista del complejo SWI/SNF

El complejo SWI/SNF se encarga de la remodelación de la cromatina y, normalmente, actúa cuando se requiere una activación de la transcripción. En estudios recientes, se ha propuesto el posible papel de Xist RNA como antagonista de este complejo. 

Curiosamente, la deleción del gen Xist produce un aumento de la accesibilidad de la cromatina regulado por BRG1, una subunidad ATPasa del complejo remodelador de la cromatina SWI/SNF. 

Por tanto, parece que la la unión de Xist RNA al cromosoma Xi inhibe la actividad de remodelación del nucleosoma de BRG1 y da como resultado la expulsión del complejo SWI/SNF del Xi.

Bibliografía

1.          Jégu T, Blum R, Cochrane JC, Yang L, Wang C-Y, Gilles M-E, et al. Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nat Struct Mol Biol. 2019 Feb 21;26(2):96–109.

2.          Balderman S, Lichtman MA. A History of the Discovery of Random X Chromosome Inactivation in the Human Female and its Significance. Rambam Maimonides Med J. 2011 Jul 29;2(3).

3.          Acosta Lobo ME, Vásquez Araque NA, Londoño Franco LF. Inactivación del cromosoma X en el desarrollo embrionario mamífero. CES Med Vet y Zootec. 2013;8(2):108–19.

4.          Migeon BR. Is Tsix repression of Xist specific to mouse? Nat Genet. 2003 Mar 1;33(3):337–337.

5.          Brockdorff N, Bowness JS, Wei G. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 2020 Jun 1;34(11–12):733–44.

6.          Maclary E, Hinten M, Harris C, Kalantry S. Long nonoding RNAs in the X-inactivation center. Chromosom Res. 2013 Dec 3;21(6–7):601–14.

7.          Froberg JE, Yang L, Lee JT. Guided by RNAs: X-Inactivation as a Model for lncRNA Function. J Mol Biol. 2013 Oct 9;425(19):3698–706.

8.          Pontier DB, Gribnau J. Xist regulation and function eXplored. Hum Genet. 2011 Aug;130(2):223–36.

9.          Duszczyk MM, Wutz A, Rybin V, Sattler M. The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA. 2011 Nov;17(11):1973–82.

10.       Arieti F, Gabus C, Tambalo M, Huet T, Round A, Thore S. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs. Nucleic Acids Res. 2014 Jun 2;42(10):6742–52.

11.       Paniagua R. Biología celular y molecular. 4ª ed. Madrid: McGraw-Hill; 2017.

12.       Jorde L, Carey J, Bamshad M. Medical genetics. 5th. ed. Sant Lake City: Elsevier; 2015.

13.       Strachan T, Read A. Human molecular genetics. 5th. ed. Florida: Garland Science; 2019.




RETROTRANSCRIPCIÓN Y RETROVIRUS

Por Miguel Ángel Lendínez y Celia Izurrategui. Biología Sanitaria. Universidad de Alcalá de Henares

Introducción

Retrovirus. Esa palabra es una de las muchas que se nos vienen a la cabeza a los científicos y a los lectores habituales de ciencia cuando toca hablar del síndrome de inmunodeficiencia humana, abreviado como SIDA. Lo cierto es que mucha gente no sabe qué es lo que desencadena exactamente esta enfermedad, y lo que es más, el desconocimiento general de la población de otros organismos de la misma familia que el VIH los hace realmente peligrosos. El objetivo de nuestra entrada será explicar brevemente qué son y cómo funcionan los retrovirus, pero sobre todo y más importante, qué podemos hacer para frenar el avance de estos asesinos invisibles.

¿Qué es un retrovirus?

Lo primero de todo es conocer a nuestro enemigo. Los organismos normalmente codificamos nuestra información genética mediante el ADN porque es una molécula muy estable. Sin embargo, otros seres como los virus especialmente la codifican en forma de ARN, lo que complica la manera de luchar contra ellos ya que su código genético es mucho más inestable. Los retrovirus (pertenecientes a la familia Retroviridae) son un tipo de virus de ARN muy especiales, ya que necesitan traducir ese ARN a ADN para replicarse dentro de la célula a la que infectan. Esta característica tan especial se debe a una enzima esencial del virus, conocida como retrotranscriptasa o transcriptasa inversa, de la que hablaremos más adelante. También debemos tener en cuenta otra familia de virus (Hepadnavirus) que poseen transcriptasa inversa pero que son virus ADN.[1]

Dentro de los virus, debemos distinguir entre envueltos y no envueltos. Los virus envueltos presentan una capa (la envuelta) que procede de las membranas de las células o de un órganulo llamado aparato de Golgi que se encuentra en el interior de las mismas. Los retrovirus pertenecen al segundo grupo, ya que al momento de salir de la célula infectada se rodea de la membrana de la misma, además de llevarse consigo algunas de las proteínas del Aparato de Golgi. [2]

Diferencias aparte, todos los virus poseen una cápside formada por proteínas que rodea al material genético del virus. Por suerte, en este caso los retrovirus no son una excepción. Aún así, por encima de esta capa los retrovirus poseen una matriz proteica.

Ejemplo de virus típico de VIH. Se puede ver que tiene dos tipos de glicoproteínas (proteínas de superficie, una que parece una cabeza, y otras unos alfileres). Así mismo, podemos observar las estructuras que hemos mencionado hace un momento. Fuente: Biorender

Retrovirus principales

Dentro de la familia de los retrovirus encontramos varios géneros que afectan diversas especies, como por ejemplo virus que producen leucemia y tumores mamarios en ratones u otras enfermedades en diferentes aves y mamíferos. Los que afectan al ser humano pertenecen a dos géneros en concreto: Deltaretrovirus y Lentivirus.

Dentro de los Deltalentivirus encontramos HTLV-I y HTLV-II, virus linfotrópicos (con afinidad por linfocitos) de las células T humanas, que son causantes de leucemias de estas células. El HTLV fue el primer retrovirus humano infeccioso y oncogénico descubierto.

El descubrimiento de este virus comenzó en 1978 cuando un paciente de 28 años fue erróneamente diagnosticado con linfoma cutáneo de células T o micosis fungoide. Tras cultivar células T de una biopsia de nódulos linfáticos y ser sometidas a los estudios estándar de la época se descubrió un retrovirus no descrito anteriormente. Se cultivaron los viriones y cuando estaban parcialmente purificados se realizó la caracterización bioquímica y la de la retrotranscriptasa asociada a estos. Tras esta caracterización se realizaron numerosos estudios que ayudaron a demostrar la naturaleza única del HTLV. [3]

En el género Lentivirus encontramos los virus de la inmunodeficiencia humana, VIH-I y VIH-2, conocidos por producir el síndrome de inmunodeficiencia adquirida o SIDA.

Los primeros casos del SIDA fueron detectados en Nueva York y Los Angeles en 1981. Se observó en pacientes jóvenes, sobre todo homosexuales, previamente sanos el desarrollo de infecciones oportunistas como neumonía, infecciones de mucosas por Candida albicans y la aparición de sarcoma de Kaposi. Algunos pacientes presentaban linfadenopatía generalizada precediendo el desarrollo de estas manifestaciones infecciosas. Se asociaron estas manifestaciones con una inmunodeficiencia celular adquirida no descrita hasta ese momento. Estamos hablando del inicio de la epidemia. Poco tiempo después se describieron otros grupos de riesgo que incluían pacientes con hemofilia, usuarios de drogas intravenosas, haitianos y receptores de hemoderivados. La evidencia epidemiológica apuntaba hacia un agente infeccioso transmisible por vía sexual o sanguínea.

A pesar de estos importantes antecedentes y de que Gallo sospechaba desde un inicio que el agente causal de esta nueva enfermedad era un retrovirus, tuvo dificultades para aislar, en un principio, el virus causante del SIDA y otro grupo de investigadores se adelantaría. En 1985 se llevó a cabo la clonación y secuenciación del genoma del virus, y una caracterización precisa de las proteínas de su envoltura.[4]

Classification of retroviruses
Tabla que muestra los distintos tipos de retrovirus descubiertos hasta la fecha. Como podemos ver, hay muchos más de los que uno puede pensar en un principio. Fuente: https://www.researchgate.net/figure/Classification-of-retroviruses_tbl2_5530403

Enfermedades que provocan y sintomatología

Vamos a comenzar con el VIH. Dentro de los primeros días de la adquisición del VIH ocurre una enfermedad transitoria, en ocasiones sintomática asociada a altos niveles de replicación del VIH y a una rápida caída de los linfocitos T CD4 (también llamados linfocitos T helpers, que se encargan de ayudar en la respuesta inmune). Inmediatamente después de la exposición y transmisión, el virus se replica en la mucosa y en la submucosa, que son la parte más externa del tejido infectado (ya sea el tejido vaginal, rectal, uretral… etc) y drena hacia el tejido linforeticular, donde se encuentran muchos linfocitos, y ya no puede ser detectado en sangre. Esta fase es denominada “fase de eclipse” y dura entre 7 a 21 días. Se comienza a considerar infección aguda cuando encontramos una gran cantidad del RNA del virus en el plasma sanguíneo.

Célula infectada por VIH. Foto tomada mediante microscopía electrónica de barrido, coloreada. Credit THOMAS DEERINCK, NCMIR / SCIENCE PHOTO LIBRARY

La respuesta inicial es inespecífica, y llevada a cabo por anticuerpos no neutralizantes y no selectivos. Los anticuerpos que neutralizan el virus son encontrados después de tres meses de la infección aguda. Tanto los anticuerpos específicos como inespecíficos atacan al virus destruyendo diferentes glicoproteínas de la envoltura. [5]

Debemos diferenciar entre 2 tipos de pacientes: sintomáticos y asintomáticos. Los primeros presentan un cuadro clínico similar a la mononucleosis que consisten en fiebre elevada, malestar general y fatiga. Esto suele estar acompañado por el rash cutáneo (erupción de la piel característica de la infección con VIH). Para controlar la propagación del virus en el caso de pacientes asintomáticos, se deben realizar pruebas de detección a las personas que pertenezcan a algún grupo de riesgo de contraer el virus, por ejemplo, consumidores de droga mediante vía parenteral, prostitutas, etc. [6]

En cuanto al HTLV-I, el virus de las células-T linfotrópico humano es el primer virus identificado en causar leucemia en células adultas linfoides T (CD4+ y CD8+) y más raramente la paraparesis tropical espástica (TSP). Esta última provoca una debilidad corporal, específicamente en las piernas, incontinencia de la orina, causadas por lesiones ocasionadas en la médula espinal por la acción de citoquininas producidas por linfocitos T citotóxicos sanos que destruyen a los infectados con HTLV-I, los cuales dañan los nervios encontrados en ésta.

La Organización Mundial de la Salud según la clasificación de tumores de tejidos hematopoyéticos y linfáticos logró, en 2008, dividir la severidad de las patologías causadas por los retrovirus “transformadores” y su incidencia mundialmente, en: agudo 60%(versión temprana de la leucemia, donde los linfocitos T se infectan) , linfomatosa 20%(o linfoblástica, donde la médula ósea produce linfocitos inmaduros), crónica 15%(crecimiento anormal de linfocitos T) y latente 5%(la médula ósea no funciona normalmente, también se le llama preleucemia).[7]

Retrotranscripción

La retrotranscripción es un proceso por el que una enzima determinada hace una copia de ADN a partir ARN. La enzima más reconocida y que generalmente hace la copia de ADN se llama retrotranscriptasa y se encuentra sobre todo en retrovirus como el VIH que llevamos mencionando. Este proceso tiene la ventaja de que lo podemos realizar además en un laboratorio para llevar a cabo distintas pruebas. Vamos a pasar a describir la enzima que lleva a cabo el proceso y el proceso en sí.

Transcriptasa inversa

La transcriptasa inversa es una enzima característica de retrovirus que permite la replicación del material genético viral, el ARN, y lo transforma en ADN, simplificando mucho el proceso. También ayuda en la formación de una doble hélice de ADN una vez que el ARN ha experimentado una transcripción inversa en una sola cadena de cDNA. Esta enzima fue descubierta por David Baltimore y Howard Temin en 1970, aunque la descubrieron por separado. [8]

Transcriptasa inversa del VIH-1. Como vemos, tiene una forma que se asemeja a una «mano», por eso su estructura tiene el nombre de ‘palm-finger-thumb’. Fuente: PDB 1REV/ Chimera USCF

Bien, ¿y cómo actúa esta enzima? Cuando el ARN de una sola hebra del retrovirus entra en la célula, lleva consigo la transcriptasa inversa. La transcriptasa primero sintetiza una hebra de ADN complementaria al ARN y se forma un híbrido ARN-ADN. A continuación, se degrada la hebra de ARN y se reemplaza por ADN, así el resultado es una doble hebra de ADN que normalmente se integra en el genoma de la célula infectada. Este genoma integrado utiliza la maquinaria celular para transcribir sus genes y proteínas. [9]

En esta podemos ver el proceso explicado en el párrafo anterior de una manera más visual. Imagen tomada de Lehninger, A., Nelson, D. and Cox, M., 2013. Principios De Bioquímica.

Sin embargo, la transcriptasa inversa no es una enzima exclusiva de virus. Nosotros, los humanos, al igual que otros seres vivos poseen en sus cromosomas una enzima llamada telomerasa que actúa como una transcriptasa inversa. A partir de un molde de ARN que lleva consigo, alarga el ADN de los telómeros con el fin de evitar la senescencia celular antes de tiempo. Aun así, esta enzima no está activa durante toda la vida de la célula (sólo en los estadíos de desarrollo tempranos, ya que, si lo estuviera toda la vida celular, la célula no moriría y se transformaría en una célula cancerosa).

Comparación de las estructuras de ambas proteínas. Como se puede apreciar, ambas comparten la forma de ‘palm-finger-thumb’ que sirve para realizar su función de transcripción. Fuente: PDB 1REV, PDB 3DU6/ Chimera USCF, Imagen cedida por Dr. César Menor Salvan

Aplicaciones, RT-PCR

Sin embargo como hemos mencionado antes, podemos aprovechar las características de la transcriptasa inversa a nuestro favor. La podemos usar para identificar cantidades muy pequeñas de ARN en la prueba conocida como RT-PCR (Reverse transcription polymerase chain reaction o reacción en cadena de la polimerasa con transcripción inversa). Si queremos cuantificar y detectar la cantidad de ARN de una muestra, tenemos que realizar además una PCR cuantitativa. Esta prueba por ejemplo la usamos en el momento de detectar el Sars-CoV-2, ya que es un virus de ARN.

¿Cómo se lleva a cabo esta reacción? Vamos a poner como ejemplo el caso del coronavirus. Primero debemos obtener el ARN viral. Para ello, tomamos una muestra (de la garganta de la persona infectada a la que le vamos a realizar la prueba en nuestro caso) y la llevamos al laboratorio. Esa muestra contiene fragmentos de ADN también, por lo que lo primero es aislar el ARN del virus y degradar ese ADN residual.

Una vez hayamos hecho esto, es el momento de amplificar (aumentar la cantidad) el ARN viral. En esta ocasión, añadimos a la muestra de ARN nuestra transcriptasa inversa, cebadores para el inicio de la transcripción (primers) y dNTPs (desoxinucleótidos trifosfato para incorporar a la cadena de nueva síntesis). Finalmente obtenemos nuestro ADNc (copia) a partir de ARN.

En este momento, cuando tengamos el ADN copia, procedemos a hacer una PCR normal, por lo que añadimos de nuevo primers, dNTP y por último en lugar de transcriptasa inversa usamos la Taq polimerasa, la enzima usada en esta prueba para sintetizar nuevas cadenas de ADN y así poder cuantificar. Además, si queremos cuantificar el amplificado de ADN debemos añadir un componente fluorescente para así poder detectar el número de cadenas amplificadas en los ciclos que repitamos.

La reacción de la PCR se puede resumir en 4 pasos fundamentales:

  1. Desnaturalización del DNA molde mediante altas temperaturas (a unos 95ºC).
  2. Adición de los cebadores previa síntesis en el laboratorio.
  3. Hibridación (annealing o anillamiento) de cebadores al ADN molde que depende de cada tipo de cebador, aunque se baja la temperatura a 50-70ºC, para que los cebadores se puedan unir a la cadena molde. El tiempo de hibridación debe ser muy corto para evitar que las cadenas se puedan volver a unir.
  4. Aumento de la temperatura hasta 72ºC (temperatura óptima de la Taq polimerasa) que provoca una extensión del cebador mediante la adición de nucleótidos, es decir, se producirá la síntesis de ADN mediante la Taq polimerasa. Esta etapa de extensión durará dependiendo de la dimensión de la muestra, teniendo en cuenta que se sintetizan unos 1000 nucleótidos por minuto.
Ilustración del proceso de PCR. Foto tomada de Alfredo De Bustos Rodríguez, profesor de Genética en la Universidad de Alcalá de Henares

Si queremos cuantificar para obtener un positivo en la prueba, se dice que realizamos una PCR cuantitativa. Esto quiere decir que establecemos 3 parámetros para medir los ciclos que tarda una PCR en dar positivo: la línea base (que determina la fluorescencia basal detectada por el aparato) el umbral de fluorescencia (línea que deben cruzar las cadenas amplificadas para que se detecte positivo) y el valor Ct (cantidad de ciclos necesarios para cruzar el umbral) Cuantos menos ciclos necesite la prueba para dar positivo, mayor es la cantidad de ARN que tenemos en la muestra. [10]

Vamos a poner un ejemplo: si una muestra necesita 40 ciclos para dar positivo, se dice que hay poca cantidad viral, en cambio si otra muestra necesita tan solo 10, hay mucha más cantidad de ARN del virus que en la primera muestra.

En esta imagen vemos que es en el ciclo 22 cuando se detecta la fluorescencia y también que tenemos material vírico en el organismo de la persona. Foto tomada de Alfredo de Bustos Rodríguez, UAH.
Descripción visual del proceso de RT-PCR. Podemos ver de manera gráfica cómo se realiza el proceso y la forma de detectar los datos. Fuente

ORIGEN, TRANSMISIÓN Y TRATAMIENTOS DEL VIH

Origen y replicación vírica

Bueno, ahora que ya sabemos qué es un retrovirus y qué es la transcriptasa inversa, podemos explicar un poco más a fondo la naturaleza del VIH.

La hipótesis más aceptada establece que el VIH es producto de una zoonosis, una enfermedad transmitida de animales al hombre. En concreto, gracias a técnicas de sampling y analizando ADN mitocondrial de los chimpancés, se cree que este virus surgió al mutar el SIV (virus de inmunodeficiencia en simios) a VIH-1. Lo que resultó curioso es que se pensaba que el SIDA (que provoca una bajada de linfocitos T helpers) comenzó a detectarse con la aparición del VIH, pero en realidad la enfermedad se detectó ya en estos chimpancés, cuando en unos análisis de su sangre pudieron confirmar una presencia de linfocitos Th 3 veces menor comparado con el número normal de estas células.[11]

El virus del VIH-2 también se cree que procede del SIV, pero en este caso el estudio que plantea la hipótesis utiliza un análisis filogenético (un análisis «de parentesco» entre distintas especies) para llegar a la conclusión de que a partir de uno de los genes del SIV se derivaba otro del VIH-2. [12]

Ya puestos en contexto, vamos a hablar sobre cómo se replica el virus del VIH. Recordando un poco la estructura del virus, mencionamos que había dos glucoproteínas, que se llaman gp120 y gp41. Gp120 facilita el reconocimiento del receptor de la célula diana, que es el receptor CD4 presente en linfocitos Th sobre todo (aunque también se encuentra en otras células como macrófagos, monocitos y células dendríticas), aunque también se ha visto que el virus necesita reconocer a otros correceptores adicionales para permitir la fusión. Una vez reconocido el receptor, la proteína gp41 provoca que la membrana de la célula se fusione con la membrana vírica y el virus entre por fusión al interior de la célula.[13]

Gracias a la transcriptasa inversa, el ARN del virus forma un híbrido ARN-ADN que a su vez terminará formando un ADN duplexo debido a que la transcriptasa inversa elimina el ARN viral. Una vez hecho esto, el ADN penetrará en el núcleo para integrarse dentro del cromosoma y pasar a un estado latente dentro de la célula o por el contrario iniciar un ciclo productivo.

La ARN polimerasa dependiente de ADN se encargará de transcribir los genes virales para formar los mensajeros y dar lugar a las proteínas necesarias para los nuevos viriones mediante su traducción en los ribosomas. Los genes que lleva el virus se conocen como gag, pol y env. El gen env codifica las proteínas de la envoltura (gp120 y gp41), gag codifica las proteínas estructurales (las que forman parte de la matriz, cápside y nucleocáside) y pol las enzimas principales del virus (transcriptasa inversa, integrasa para la integración en el cromosoma celular y proteasa para cortar poliproteínas).

Finalmente, el virus termina de madurar en el citoplasma y sale de la célula por exocitosis, llevándose parte de la membrana celular que tendrá proteínas glicosiladas procedentes del aparato de Golgi. [13]

Dependiendo del tipo de célula el virus decide hacer un ciclo u otro:

  • En linfocitos T queda latente hasta que decide iniciar un ciclo lítico. Este efecto se corresponde con la inmunosupresión.
  • En otras células como macrófagos el virus realiza un ciclo persistente, es decir, libera los virus poco a poco sin matar a la célula, lo que sirve al virus como reservorio. Esto puede llevar a alteraciones neurológicas si los macrófagos infectados viajan al sistema nervioso.
Resumen del ciclo de replicación del VIH. CCR5 es un correceptor celular necesario también para que el virus reconozca a la célula a infectar. Creado con Biorender.com

Formas de transmisión

El virus se transmite de muchas maneras, y las vamos a mencionar de mayor a menor riesgo de contagio[14]:

  • Sexo anal sin protección: Es la forma más fácil de contagiarse del VIH. Es más peligroso ser la persona pasiva que la activa. Esto es debido a que la piel que tapiza el recto es muy fina, entonces durante la penetración puede desgarrarse fácilmente y permitir que el virus entre en el cuerpo. También el virus se puede introducir en el cuerpo de la persona activa a través de desgarros en el pene, pequeñas heridas…
  • Sexo vaginal sin protección: Ambos en la pareja pueden contagiarse de VIH durante el sexo. Las mujeres se contagian y pueden contagiar a través de la mucosa vaginal y sangre que pueda quedar en la vagina y el cérvix. El hombre, como en el caso anterior se contagia por heridas en el pene.
  • Vía parenteral: El virus se transmite si se comparten jeringuillas o agujas usadas por seropositivos, porque siempre quedan restos de su sangre. También es alto el riesgo de contraer otras ETS, además de la hepatitis B y C.
  • Transmisión vertical: Una madre puede transmitir el VIH a su hijo durante el embarazo, nacimiento o lactancia. Es la forma más común de transmisión de VIH en niños. De todos modos, si la madre toma antirretrovirales durante el embarazo y la lactancia, y da medicina al niño durante 4-6 semanas después de nacer, el riesgo de contraer el VIH es menor al 1%.

Estas son las formas principales de contagio, pero hay otras más raras como el sexo oral, lugar de trabajo (al rozarse con objetos afilados o agujas contaminadas), mordeduras de otras personas infectadas, besos con lengua… Pero todas estas formas de contagio requieren sangre de la persona infectada.

Se transmite a través de fluidos corporales como la sangre, semen, líquido preseminal, fluido rectal, fluido vaginal y leche materna.

Ahora bien, también hay otros factores que incrementan el riesgo de padecer la enfermedad, como puede ser el abuso de drogas intravenosas, tener otras ETS o la carga viral.

Tratamientos actuales contra el VIH

Tras comunicar a una persona que ha dado positivo en VIH, se le transmite información sobre los posibles tratamientos a seguir para paliar los efectos del virus del que, desafortunadamente, no conocemos la cura. Se informa al paciente de los riesgos y efectos secundarios que provocan estos medicamentos.

Los medicamentos más utilizados actualmente son[15]:

  • Los inhibidores de la transcriptasa inversa no análogos de nucleósidos (ITINN), que bloquean una proteína que el VIH necesita para replicarse.
  • Los inhibidores de la transcriptasa inversa análogos de nucleósidos o nucleótidos (ITIN) son versiones defectuosas de los componentes básicos que el VIH necesita para replicarse.
  • Los inhibidores de la proteasa (IP) inactivan la proteasa del VIH, otra proteína que el VIH necesita para replicarse.
  • Los inhibidores de la integrasa funcionan inhibiendo a una proteína llamada integrasa que el VIH utiliza para insertar su material genético en los linfocitos T CD4.
  • Los inhibidores de entrada o fusión bloquean la entrada del VIH en los linfocitos T CD4.

El tratamiento inicial consiste en la combinación de dos NRTI (inhibidores de la transcriptasa inversa análogos de nucleótidos/nucleósidos) combinados con un tercer agente, que puede ser un inhibidor de integrasa, un ITINN o bien un inhibidor de la proteasa. Se ha visto que los inhibidores de integrasa son muy efectivos contra el virus, además de que apenas presentan efectos secundarios.[16]

Como curiosidad, se ha visto que en las zonas o comunidades con gran prevalencia de SIDA, el uso de terapias antirretrovirales disminuye enormemente la detección de nuevos casos de la enfermedad, así como la disminución de la carga viral dentro de dicha zona.

Esquema que muestra todos los medicamentos desarrollados desde el 86 a 2015. Las abreviaturas del tipo de medicamento están en inglés: NRTI=ITIN, NNRTI=ITINN, INSTI=inhibidores de integrasa, PI=IP. Fuente: Cihlar, T. and Fordyce, M. (2016) ‘Current status and prospects of HIV treatment’, Current Opinion in Virology. Elsevier B.V., 18, pp. 50–56. doi: 10.1016/j.coviro.2016.03.004.

Una mirada al futuro

Proyectos de vacunas contra el VIH

Una vacuna terapéutica contra el VIH se administra a las personas seropositivas con el objetivo de reforzar su respuesta inmunitaria. En la actualidad existen muchas limitaciones en los conocimientos que tenemos de los mecanismos inmunológicos de control de replicación viral del VIH y la eficacia de las vacunas terapéuticas ha sido modesta en el mejor de los casos.

Una de las vacunas más estudiadas ha sido Remune, la cual contiene el virus completo inactivado mediante la extracción de una proteína de la envoltura. Se administró a más de 3000 personas que tenían el virus controlado por el tratamiento TAR. Los resultados mostraron que era capaz de inducir respuestas específicas de los linfocitos Th (los CD4), pero no se observó la capacidad de control inmunológico de la replicación viral.

La capacidad de las vacunas terapéuticas se demostró con un estudio en el que se utilizó una vacuna de células dendríticas en el modelo animal con infección por SIV en el que se obtuvieron increíbles resultados. El problema llegó a la hora de probarlo en 12 pacientes humanos los resultados fueron bastante peores. La vacuna no provocó efectos adversos importantes.

Otros candidatos a ser usados como vacunas terapéuticas son las basadas en ADN que incluyen algunas proteínas. Presentan todo el genoma del VIH con pérdida del gen de la integrasa y se han administrado intradérmicamente en modelos de monos con resultados prometedores. [17]

También podemos encontrar proyectos de vacunas basados en bacterias lácticas para producir inmunidad en las mucosas. esto podría resultar efectivo teniendo en cuenta que las mucosas la puerta de entrada del VIH en el caso de que se transmita por contacto sexual. El tratamiento consiste en la administración de Lactobacillus lactis modificada para expresar determinadas proteínas que inducen la formación de anticuerpos específicos a nivel de las mucosas. Solo ha sido probada en ratones, pero puede representar una estrategia tecnológica para desarrollar una vacuna contra el SIDA efectiva y segura. [18]

Casos de curación completa del VIH

Aunque mediante los tratamientos con antirretrovirales se consigue que el sistema inmunológico de las personas que padecen VIH se restablezca parcialmente y se retrase la progresión de la enfermedad, la cura de la infección por este virus sigue siendo inalcanzable con los métodos de los que disponemos actualmente. Esto se debe principalmente al establecimiento de depósitos de VIH en células de larga vida que permiten que siga existiendo replicación del virus tras retirar los tratamientos antirretrovirales.

Los estudios enfocados a la cura del VIH actualmente se basan en la mutación Δ32 del gen CCR5 que provoca que las células sean resistentes a diferentes cepas del virus. De hecho, se ha demostrado la viabilidad del trasplante de células madre hematopoyéticas de donantes que tienen esta mutación en pacientes infectados con VIH y que padecen leucemia mieloide aguda en recaída, documentándose la ausencia de viremia durante los primeros 20 meses tras retirar el tratamiento antirretroviral. Con estos resultados favorables, se cree que el camino hacia la cura de la infección por el virus de la inmunodeficiencia humana está en la investigación del gen y la mutación anteriormente mencionados, aunque exista la incertidumbre de si realmente ese paciente está realmente curado. De hecho, en otros pacientes, tras el trasplante con células madre que tenían esta mutación, se retiraron los tratamientos para el VIH y existieron rebrotes virales debido a la existencia de los reservorios del virus dentro del organismo, demostrando que no se podía obtener la eliminación completa del virus.

El estudio del que obtenemos la información sobre este tema trató de evaluar la capacidad de reconstrucción de los linfocitos T colaboradores, que contaban con la mutación Δ32, en un seguimiento de 3 años y medio tras en trasplante tanto a nivel sistémico como en el sistema inmunológico de la mucosa. En sus resultados se demostró la exitosa reconstrucción de estas células y además se encontró una reducción del tamaño de los reservorios de VIH. Si bien las células recuperadas seguían siendo susceptibles de infección por el virus, el paciente permanecía sin evidencia de infección tras 3 años y medio de la retirada de los tratamientos antirretrovirales. A partir de esto resultó razonable concluir que el paciente había sido curado de la infección por VIH. [19]

Campañas de prevención

La primera campaña en España no tuvo lugar hasta el año 1987, lo que resultan un tanto tardío, teniendo en cuenta que existían casos desde 1982, y fue diseñada por Mariscal. En esta se trataba de informar de las vías de contagio del VIH a una población en ese momento muy desinformada, pero la forma de hacerlo fue bastante infantil. A favor de esta campaña se puede decir que trataba de esquematizar todas las formas de contagio, información que era necesaria e imprescindible. el problema era que la importancia del peligro del SIDA y la necesidad urgente del cambio en el comportamiento de las personas resultó mermada por la forma en la que era transmitido el mensaje: unos dibujos animados que emitían repetidamente el juego de palabras «Si da, no da».

Primera campaña contra el SIDA en España. Imagen de Hernánez, R. M. (2009). El Sida Ante La Opinión Pública : El Papel De La Prensa Y Las Campañas De. Revista de Humanidades

Si se observa la campaña de 1988 (que se siguió utilizando hasta 1992), nos damos cuenta de que tanto la imagen como el lema «El sida te engancha por el pico» pueden dar lugar a equivocación porque en realidad el virus del sida no está en la heroína: si uno consume una dosis con su jeringuilla y destruye ésta después, no coge el SIDA. Por lo tanto las primeras campañas dirigidas a las personas drogodependientes cayeron en confundir el mensaje de prevención del sida con el de las campañas antidrogas, y sería necesario aclarar que el SIDA no se encontraba ni en la heroína ni en una jeringuilla nueva.

Campaña contra el SIDA enfocada a drogodependientes. Imagen de Hernánez, R. M. (2009). El Sida Ante La Opinión Pública : El Papel De La Prensa Y Las Campañas De. Revista de Humanidades

Una de las campañas que mejor funcionó fue «Protégete» (2002) creada en el 20 aniversario de los primeros casos de sida en España. Hace hincapié en la necesidad de utilizar el preservativo como estrategia fundamental de prevención y es lo suficientemente clara y directa para no dar lugar a segundas interpretaciones. El motivo utilizado, el preservativo-salvavidas, se convirtió en símbolo que acompañaba a otras campañas, como la del año 2003, con el lema «rompe la cadena, protégete». [20]

Campaña<<Protégete>>. Imagen de Hernánez, R. M. (2009). El Sida Ante La Opinión Pública : El Papel De La Prensa Y Las Campañas De. Revista de Humanidades

En cuanto a la campaña que se está llevando actualmente en España, el Misterio de Sanidad afirma que el VIH está produciendo una oleada de nuevas infecciones en hombres homosexuales, ya que uno de cada tres diagnósticos de VIH en nuestro país debe a prácticas sexuales entre hombres. En los estudios realizados, más del 10% de los hombres que tienen relaciones homosexuales están infectados por el VIH.

Imágenes de la campaña actual contra el sida. Fuente

La conclusión que se puede sacar de este apartado es que los responsables de las políticas de prevención de SIDA deberían de ser conscientes de la importancia que tiene diseñar campañas cuyo mensaje resulte coherente, contundente, suficientemente informativo y científicamente correcto.

Bibliografía

  1. Gallo, R. C. and Montagnier, L. (2003) ‘The Discovery of HIV as the Cause of AIDS’, New England Journal of Medicine, 349(24), pp. 2283–2285. doi: 10.1056/nejmp038194.
  2. Domingo, E., Parrish, C. and Holland, J., 2011. Origin And Evolution Of Viruses. Amsterdam: Academic Press.
  3. Coffin, J. M. (2015) ‘The discovery of HTLV-1, the first pathogenic human retrovirus’, Proceedings of the National Academy of Sciences of the United States of America, 112(51), pp. 15525–15529. doi: 10.1073/pnas.1521629112.
  4. Carrillo Maravilla, Eduardo, & Villegas Jiménez, Armando. (2004). El descubrimiento del VIH en los albores de la epidemia del SIDA. Revista de investigación clínica56(2), 130-133.
  5. Pintos Pascual, I., Muñez Rubio, E., & Ramos Martínez, A. (2018). Diagnosis of acute and chronic HIV infection and their evolutionary stages. Medicine (Spain), 12(56), 3329–3331.
  6. Esteban, C. S. (2014). VIH: Infeccion aguda, pesquisa y manejo. Revista Médica Clínica Las Condes, 25(3), 419–424.
  7. Fragoso García, Erick, Rosenthal, Jareth Lassard (2015) ‘Retrovirus que ocasionan cáncer en humanos’ Colegio Indoamericano, S.C. (6779), México.
  8. Baltimore, D. (1970) ‘Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of RNA tumour viruses’, Nature, pp. 1209–1211. doi: 10.1038/2261209a0.
  9. Lehninger, A., Nelson, D. and Cox, M., 2013. Principios De Bioquímica.
  10. Real García, M., Rausell Segarra, C. and Latorre, A., 2017. Técnicas De Ingeniería Genética. Madrid: Síntesis.
  11. Sharp, P. M. and Hahn, B. H. (2010) ‘The evolution of HIV-1 and the origin of AIDS’, Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1552), pp. 2487–2494. doi: 10.1098/rstb.2010.0031.
  12. Santiago, M. L., Range, F., Keele, B. F., Li, Y., Bailes, E., Bibollet-Ruche, F., Fruteau, C., Noe, R., Peeters, M., Brookfield, J. F. Y., Shaw, G. M., Sharp, P. M. and Hahn, B. H. (2006) ‘Simian Immunodeficiency Virus Infection in Free-Ranging Sooty Mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire: Implications for the Origin of Epidemic Human Immunodeficiency Virus Type 2’, Journal of Virology, 80(9), pp. 4645–4645. doi: 10.1128/jvi.80.9.4645.2006.
  13. Freed, E. O. (2001) ‘HIV-1 replication’, Somatic Cell and Molecular Genetics, 26(1–6), pp. 13–33. doi: 10.1023/A:1021070512287.
  14. https://www.cdc.gov/hiv/basics/hiv-transmission/ways-people-get-hiv.html
  15. https://www.mayoclinic.org/es-es/diseases-conditions/hiv-aids/diagnosis-treatment/drc-20373531
  16. Cihlar, T. and Fordyce, M. (2016) ‘Current status and prospects of HIV treatment’, Current Opinion in Virology. Elsevier B.V., 18, pp. 50–56. doi: 10.1016/j.coviro.2016.03.004.
  17. García, F., Ruiz, L., López-Bernaldo de Quirós, J. C., Moreno, S., & Domingo, P. (2005). Inmunoterapia y vacunas terapéuticas en la infección por VIH. Enfermedades Infecciosas y Microbiología Clínica, 23, 84–94. https://doi.org/10.1016/s0213-005x(05)75164-8
  18. Luna Cruz, I., Rodríguez Padilla, C., Tamez Guerra, R., & Alcocer González, J. (2003). Desarrollo de vacunas basadas en bacterias lácticas para inducir inmunidad en mucosas contra VIH. Ciencia UANL, 6(1).
  19. Church, J. A. (2011). Evidence for the cure of HIV infection by CCR5δ32/Δ32 stem cell transplantation. Pediatrics, 128(SUPPL. 3), 2791–2799. https://doi.org/10.1542/peds.2011-2107IIII
  20. Hernánez, R. M. (2009). El Sida Ante La Opinión Pública : El Papel De La Prensa Y Las Campañas De. Revista de Humanidades, 15(2009), 237–268.



Mecanismo de actuación de los alcaloides de la vinca como antitumorales

Ignacio Moratilla Rivera. Biología Sanitaria-Universidad de Alcalá de Henares.

La vincapervinca (Vinca minor) y la vinca de Madagascar (Catharanthus roseus) son plantas de la familia de las apocináceas que destacan por su gran belleza. Es bastante común encontrarlas en jardines como ornamentales (por ejemplo, en los jardines colgantes de Madrid) y también son de hábito silvestre. Pero a pesar de su anodina apariencia contiene una serie de compuestos químicos que tienen la capacidad de luchar contra el cáncer.

Estos compuestos son los conocidos como alcaloides de la vinca. Tenemos dos muy conocidos pero existen muchos más, estos son la vinblastina y la vincristina. Algunos se han creado sintéticamente como la vinflunina.

Los alcaloides de la vinca fueron los primeros alcaloides biosintetizados en plantas que se usaron para remediar el cáncer.

Su mecanismo de acción consiste en la inhibición de la polimerización de los microtúbulos, que como sabemos son imprescindibles para llevar a cabo la división celular. Las células cancerosas se caracterizan por su inusitada capacidad proliferativa, por lo que la propiedad de estos alcaloides los hace idóneos para frenar su avance.

BOTÁNICA

Tanto la V. minor como C. roseus pertenecen a la familia Apocynaceae, al igual que la adelfa (Nerium oleander), Rauvolfia serpentaria o el estrofanto (Strophantus).

V. minor suele ser rastrera o puede trepar sobre tutores. Esta presenta hojas pediculadas, elípticas y opuestas, normalmente de un color verde oscuro. Las flores suelen ser lilas con cinco pétalos soldados en la base, dando las partes libres un aspecto de hélice. El centro de las flores encontramos un hueco cuyos bordes delimitan una estrella y en su interior se hallan los órganos reproductores.

C. roseus es muy similar a la vinca, aunque teniendo las hojas menos puntiagudas. Lo más característico y bello son las flores. Estas oscilan en una gran gama cromática de rosas, rojas, magentas y blancos. Presentan 5 pétalos y el centro de la flor presenta un agujero circular que alberga el androceo y gineceo.

Figura 1: Imágenes de las dos especies. Catharanthus roseus (Vinca (Catharanthus roseus) | My Garden Life) y Vinca minor (¿Cómo se cuida la Vinca minor? | Jardineria On)

Ambas son especies monoicas de flores hermafroditas.

MICROTÚBULOS

Los microtúbulos son estructuras tubulares que forman parte del citoesqueleto y van a intervenir en diversas funciones como dar forma a la célula, transporte, transducción de señales y, lo más relevante ahora, el movimiento de los cromosmas.

Están constituidos por dos proteínas globulares que se organizan en espiral: son la tubulina α y la tubulina β.

Estas estructuras no son siempre estables como en axones neuronales o cilios, sino que pueden estar en constante polimerización y despolimerización.

Para la polimerización las tubulinas se incorporan en dímeros de β y α tubulina, los cuales previamente se han debido de unir con GTP. Los dímeros se unen por uno de los extremos del microtúbulos, y pasado un tiempo el GTP de la tubulina β se hidroliza al GDP, mientras que el de la tubulina α no lo hace.

La unión del GTP no es covalente, sino que se estabiliza por puentes de hidrógeno de grupos OH y NH2 de las cadenas laterales de los aminoácidos presentes en el sitio de unión. Además existe un átomo de Mg2+ que estabiliza su posición. Por último, la base de guanina forma un stacking con un residuo de Tyr.

Figura 2: Realizada con Chimera y BioRender. Muestra la disposición espacial del GTP en su sitio de unión dentro de la tubulina (PDB: 1Z2B)

Dicha unión previa a GTP debe ser correcta para el óptimo ensamblaje de los microtúbulos.

Figura 3: Imagen realizada con Chimera: Unión de tubulinas. Se aprecia su estructura globular y su predominio de α-hélice . En rojo tubulina α y en azul tubulina β. (PDB: 1Z2B)

Vinblastina y vincristina

Estas dos moléculas son sintetizadas a partir de otros dos alcaloides indólicos (derivados del Trp), esto hace que tengan es su estructura dos grupos indol (heterociclo nitrogenado) y se conozcan como alcaloides binarios. Son acumuladas en las partes aéreas de las plantas y en bajas concentraciones.

Vincristine and Vinblastine Anticancer Catharanthus Alkaloids:  Pharmacological Applications and Strategies for Yield Improvement |  SpringerLink

Estas dos se diferencian la una de la otra en un solo radical: la viblastina tiene grupo metilo y la vincristina tiene grupo formilo. Este sutil cambio hace que sus propiedades anticancerígenas cambien. Los dos no afecta por igual a todos los tipos de neoplasias.

La vinblastina ha sido empleada en linfomas de Hodgking, cáncer de células germinales en el testículo y cáncer de mama.

La vincristina se ha utilizado en leucemias, linfomas y neuroblastomas.

Vamos a centrarnos en el mecanismo molecular de la inhibición de la polimerización.

La tubulina β presenta en su estructura el conocido como domino de unión a vinca. Es en esta región donde se unen estos alcaloides.

Esta zona se encuentra adyacente al sitio de unión de GTP de la tubulina, produciendo un cambio conformacional que impide la correcta unión del nucleótido y que por lo tanto no pueda realizarse satisfactoriamente la polimerización de los microtúbulos.

Figura 4: Imagen realizada con Chimera y BioRender. Muestra la posición que acupan dentro de la molécula la vinblastina y el GDP. La cercanía nos muestra la interferencia existente. (PDB: 1Z2B)

La unión tiene una alta afinidad y es reversible, producida por puentes de hidrógeno. Estos son dos en la vinblastina establecidos por una Asn con N del grupo indol y un oxígeno que forma parte de un enlace peptídico con un grupo OH.

Figura 5: Imagen realizada con Chimera. Se observa con líneas negras los puentes de hidrógeno presentes en la estructura. Apréciese la colocación de la vinblastina y las interacciones intermoléculares que establece. (PDB: 1Z2B)

En las divisiones celulares los microtúbulos están en constante polimerización y despolimerización, ya que tienen que colocar los cromosomas en el ecuador de la célula formando la placa metafásica o plano ecuatorial. De tal manera que los alcaloides detienen la división justo en el momento de la metafase.

Figura 6: Imagen realizada con Chimera y BioRender. Esquema de actuación de los alcaloides de la vinca sobre los microtúbulos. Imagen de Catharanthus roseus (Madagascar O Bígaro O Flor De Vinca, Catharanthus Roseus. Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 44015157. (123rf.com) y vinblastina (PDB: 1Z2B).

TOXICIDAD

Una vez entendido cómo actúan estos compuestos no es de extrañar que traigan consigo una serie de efectos secundarios tóxicos para el paciente. Se pueden intentar paliar mediante una disminución en la frecuencia de la toma o bajando la dosis.

La neurotoxicidad es común en estos alcaloides, pero parece que es más severa la vincristina. Las neuronas realizan el transporte axonal a través de microtúbulos y proteínas como la quinesina y la dineina. Al interferir en el ensamblaje de estos componentes citoesqueléticos la células nerviosas disminuyen su transporte generando problemas a nivel del sistema nervioso central (alucinaciones, confusión, insomnio o depresión) y periférico (hormigueo, dolor muscular).

Otras afecciones comunes son las gastrointestinales debido a lo prolíficas que son las células epiteliales del intestino, cursando con dolor abdominal, nauseas, diarrea o estreñimiento. Por este mismo motivo también se produce la caída del cabello o alopecia.

Se han reportado también casos de azoospermia, ceguera, disnea y broncoespasmo.

Debido al efecto leucopenizante de la vinblastina, durante la medicación se debe evitar la vacunación por su posible reactividad. Se contraindica además para mujeres embarazas como para aquellas que estén proporcionando lactancia.

Figura 7: Imagen realizada con BioRender y Chimera. Resumen de los efectos colaterales de los alcaloides de la vinca. (PDB: 1Z2B)

Referencias:

1. Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med. 2013;4(11):1231-1235.

2. Grindey, G. B. (1989) ‘Vinca alkaloids.’, Current opinion in oncology, 1(2), pp. 203–205. doi: 10.1016/B978-0-444-53717-1.01632-2.

3. Paniagua R, Nistal M, Sesma P, Álvarez-Uría M, Fraile B, Andón R, Sáez F.J. (2007). Biología celular y molecular 4ª edición. Madrid. Ed: Mc Graw Hill Education.

4. Bruneton J. (2001). Farmacognosia, fitoquímica, plantas medicinales 2ª edición. Ed: Acribia.




Telómeros, cáncer y envejecimiento

Yuliia Fatych, Patricia Tato Moreno. 3º Biología Sanitaria. Universidad de Alcalá

Introducción histórica

En 1938, Hermann J. Müller observó que en los extremos de cromosomas expuestos a rayos X de Drosophila melanogaster no se producían mutaciones como deleciones o inversiones, mientras que esto sí ocurría en el resto del genoma. Esto se debía a la presencia de un “casquete protector” al que denominó “gen terminal” y, más tarde, “telómero”.1

Dos años después, Barbara McClintock, que realizaba estudios genéticos con maíz, describió la formación de cromosomas dicéntricos mediante la ruptura de los cromosomas y su posterior adhesión y fusión de sus extremos. Gracias a estas investigaciones, McClintock demostró que los extremos de los cromosomas se podían restaurar gracias a la obtención de un nuevo telómero.1

Sin embargo, la investigación sobre los telómeros no se volvió a retomar hasta treinta años más tarde, cuando James Watson identificó el problema de la replicación del DNA en los extremos de los cromosomas. Debido a que las DNA-polimerasas sólo pueden sintetizar DNA en sentido 5’ → 3’, la cadena 5’ → 3’ se forma mediante la síntesis de fragmentos de Okazaki, cada uno de los cuales necesita un cebador. Esto hace que el extremo 3’ del cromosoma no se pueda replicar por completo y, por tanto, en cada replicación, éste se acorta. Esto limita la capacidad de replicación de la célula. Olovnikov descubrió que la senescencia celular se producía como consecuencia del sobrepaso de ese límite, lo que provoca la alteración de la célula.1

Elizabeth Blackburn, Carol Greider y Jack Szostak (de izquierda a derecha). The Nobel Prize in Physiology or Medicine 2009. (s.f.). The Nobel Prize in Physiology or Medicine 2009. [Imágenes]. Recuperado el 24 de noviembre de 2019 de https://www.nobelprize.org/prizes/medicine/2009/summary/

Más tarde, tras muchos años de trabajo e investigación sobre los telómeros del protozoo Tetrahymena thermophila y de la levadura Saccharomyces cerevisiae, Elizabeth Blackburn, Jack Szostak y Carol Greider, descubrieron la existencia de una actividad enzimática que denominaron “transferasa telómero terminal”. Esta actividad estaba presente en la enzima telomerasa, a la que le atribuyeron el papel de la replicación del DNA telomérico, impidiendo el acortamiento progresivo de los telómeros en cada división celular.1 Finalmente, en el año 2009, Blackburn, Szostak y Greider recibieron el Premio Nobel de Medicina y Fisiología por sus estudios sobre los telómeros y el descubrimiento de la telomerasa.2

Estructura de los telómeros

Los telómeros son unas estructuras que se ubican en los extremos de los cromosomas lineales eucarióticos y que están compuestos por proteínas y secuencias de DNA no codificante repetidas en tándem. La secuencia repetida es la secuencia (TTAGGG)n, lo que hace que en los telómeros exista una hebra rica en nucleótidos de guanina, conocida como hebra G, y otra hebra rica en nucleótidos de citosina.  La hebra G es la que se encuentra orientada en dirección 5’ → 3’ y, en su extremo, sobresale de la cadena de DNA, por lo que no se aparea con la hebra antiparalela, debido a que ésta es más corta. Este fragmento de DNA simple de la hebra G se conoce como overhang-3’ y tiene una longitud que varía según la especie. Además, la longitud de los telómeros también es variable y en cada cromosoma la cantidad de DNA telomérico puede ser diferente.3,4

Estructura del telómero. Pierce, B. A. (2016). Genética: Un enfoque conceptual. [Figura]

Es importante señalar la existencia de estructuras complejas en el extremo 3’ rico en G, denominadas G-cuadruplexos. Dichas estructuras se pueden encontrar en diferentes conformaciones, unidas por planos cuadrados que contienen 4 guaninas (que a su vez interaccionan por puentes de hidrógeno de Hoogsteen). Esta estructura ordenada impide la acción de las nucleasas, las cuales trabajan sobre las hebras sueltas de DNA.5

G-cuadruplexos presentes en el 3’-overhang de los telómeros. Rhodes, D., & Lipps, H. J. (2015). G-quadruplexes and their regulatory roles in biology. [Figura]. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605312/pdf/gkv862.pdf

Por otro lado, en los telómeros también podemos encontrar unas secuencias repetidas, conocidas como secuencias asociadas a los telómeros. Estas estructuras varían según la especie en cuanto a su longitud, secuencia y complejidad. Además, parece ser que no tienen un papel importante en la estabilidad del cromosoma y todavía no se conoce cuál es exactamente su función.4

Esta estructura especial de los telómeros, hace que éstos tengan la función de evitar que se fusionen con los extremos de otros cromosomas, lo que se conoce como fusión telomérica. Además, también van a tener otras funciones como preservar la región codificante del DNA de la acción enzimática, permitir la interacción entre los cromosomas y la matriz nuclear, e intervenir en la transcripción de genes subteloméricos que regulan el ciclo celular. 6

Los telómeros de mamíferos se encuentran asociados a un complejo multiproteico formado por seis proteínas que recibe el nombre de shelterina, cuya función es favorecer la formación de un lazo (“loop T”) que permite que el telómero se doble, secuestrando el extremo terminal de los cromosomas. Esto evita que el DNA telomérico sea dañado por nucleasas. Además, dicho complejo multiproteico impide que se lleve a cabo un mecanismo de reparación de DNA (MRA) en los telómeros, y regula la actividad de la telomerasa.5

Las proteínas que forman el complejo de la shelterina son TRF1, TIN2, TRF2, RAP1, POT1 y TPP1. La shelterina es reclutada por los telómeros a través de TRF1 Y TRF2. La proteína TRF1 (factor 1 de unión a las repeticiones teloméricas) se une a las secuencias repetidas TTAGGG de doble cadena e interacciona con TIN2 (factor 2 nuclear de interacción con TRF2). TRF2 también se une a las repeticiones teloméricas de doble cadena y, a su vez, interacciona con RAP1 (proteína 1 represora/activadora). Además, TIN2 también se encuentra asociada a TRF2. Sin embargo, a diferencia de TRF1 y TRF2, POT1 (protección del telómero 1) se puede unir a las secuencias TTAGGG formadas por una hebra simple y se conecta a TRF1 y TRF2 a través de la proteína TPP1 (proteína homóloga de la displasia adrenocortical). Al mismo tiempo, TPP1 también se asocia a TIN2.7,8

Estructura del telómero, del complejo de la shelterina y de la telomerasa. Maciejowski, J., & de Lange, T. (2017). Telomeres in cancer: tumour suppression and genome instability. [Figura]. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589191/pdf/nihms889355.pdf

Además del “loop T”, en el cual el DNA monocatenario se enrosca alrededor de un círculo estabilizado por shelterina, existe al final de éste otro bucle, el “loop D”. Este último loop consiste en una estructura de triple hebra denominado como bucle de desplazamiento, en el cual el DNA telomérico monocatenario se entrelaza con una región de DNA bicatenario.5

Formación del “loop T” y el “loop D” en los telómeros. Fuente: Gómez, D. E., Armando, R. G., & Farina, H. G. (2014). Telomerasa y telómero: su estructura y dinámica en salud y enfermedad. [Figura]. Recuperado de https://ri.conicet.gov.ar/bitstream/handle/11336/33524/CONICET_Digital_Nro.04021bb0-5272-4a91-b05d-cdddd773d6ee_A.pdf?sequence=2&isAllowed=y

Aspectos moleculares de la telomerasa: estructura, función, regulación.

Arquitectura funcional de la telomerasa

La  telomerasa es una enzima de tipo ribonucleoproteína que participa en la síntesis de las secuencias repetitivas de DNA de los telómeros, estabilizando su longitud.6

La enzima telomerasa humana posee una subunidad catalítica (TERT), una subunidad de RNA (hTR, también llamado TERC o TER) que proporciona el molde para la adición de la secuencia telomérica (TTAGGG)n, y proteínas accesorias. Estas proteínas participan en la regulación de la biogénesis de la telomerasa, así como en su localización dentro de la célula y su funcionamiento in vivo. 5

Las proteínas accesorias que intervienen en la arquitectura de la telomerasa son5:

  • Disquerina.
  • NHP2.
  • NOP10.
  • Pontina/Reptina.
  • GAR1.
  • TCAB1.
Estructura de la telomerasa humana. Gómez, D. E., Armando, R. G., & Farina, H. G. (2014). Telomerasa y telómero: su estructura y dinámica en salud y enfermedad.  [Figura]. Recuperado de https://ri.conicet.gov.ar/bitstream/handle/11336/33524/CONICET_Digital_Nro.04021bb0-5272-4a91-b05d-cdddd773d6ee_A.pdf?sequence=2&isAllowed=y

La disquerina, el NHP2 y la NOP10 son 3 de las proteínas accesorias implicadas en la estabilidad y la acumulación de TER (RNA de la telomerasa humana). Por otro lado, la disquerina y GAR1 asociados a TER, posibilitan que la telomerasa sea funcional.5

A su vez, nos encontramos con dos ATPasas (pontina y reptina), que se asocian a TERT (región catalítica) en la fase S del ciclo celular. Su ausencia, dificulta la acumulación de la telomerasa, por lo cual son dos proteínas muy importantes para el montaje de la enzima.  Además, se ha visto que también ayudan a la estabilidad de TER durante el ensamblaje de la telomerasa.5

Se cree que una vez terminado el acoplamiento de todos los componentes de la telomerasa, la pontina y la reptina se disocian, dejando libre la enzima activa en su actividad catalítica.5

Se cree que TCAB1 sería la proteína accesoria encargada de la ubicar a la telomerasa dentro de la célula.5

Estructuras en alta resolución de los subdominios TER Y TERT 

  • TER

La longitud de TER puede variar dependiendo del organismo en el que nos fijemos: 150 nucleótidos en ciliados, 450 nucleótidos en vertebrados, y hasta 1300 nucleótidos en algunas levaduras.  A pesar de esto, se ha descubierto que todas las subunidades TER contienen 2 estructuras secundarias conservadas: un dominio central de pseudonudo (“pseudoknot-template core domain”), catalíticamente esencial, y un tallo-bucle (“stem-loop element”), denominado CR4-CR5 en vertebrados. Dichas estructuras interaccionan directamente con TERT.9

Comparación de las estructuras de TER de la telomerasa de Tetrahymena y la telomerasa humana. En verde el pseudonudo y en azul el tallo-bucle, dos estructuras conservadas. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66
  • TERT

Gracias a la comparación de secuencias genéticas codificantes para TERT de distintos organismos, se ha descubierto la existencia de un dominio muy conservado en cuanto a su organización y tamaño (de unos 1100 aminoácidos).9

Dicha región de la subunidad catalítica TERT está formada desde el sentido N-terminal hasta el C-terminal por9:

-Un dominio esencial de extensión N-terminal (“essential N-terminal extension domain” o TEN), el cual tiene afinidad por el DNA telomérico monocatenario. A su vez, contacta directamente con TPP1/TIN2.

-Una región de enlace flexible (“linker”). Es el sitio de unión de TEN y TRBD.

-Un dominio de unión a RNA (“RNA binding domain” o TRBD). Interacciona con la región tallo-bucle o CR4-CR5 de TER.

-Un dominio central de la transcriptasa inversa (RT), el cual posee homología estructural y funcional con la transcriptasa inversa retroviral.

-Una extensión C-terminal (CTE).

Estructura del dominio de la subunidad catalítica TERT. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66
Modelo tridimensional del dominio TEN y TRBD en Tetrahymena. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66

Para esclarecer la estructura tridimensional de TERT se han utilizado escarabajos (Tribolium castaneum). Teniendo en cuenta que no poseen el dominio TEN, la estructura resultante genera una forma de anillo gracias a que TRBD y CTE se acercan en el espacio y forman un túnel catalítico. El DNA se uniría a CTE y el molde de RNA a RT, posicionando el extremo 3’ del G-overhang en el túnel catalítico para la adición de nucleótidos.9

Estructura tridimensional de TERT. Esta forma un anillo alrededor de la hélice DNA-RNA y permite la adición de nucleótidos. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66

Estructuras tridimensionales de la telomerasa humana y de Tetrahymena

La estructura de las telomerasas se ha determinado mediante microscopía electrónica de partículas individuales (EM) en tinción negativa, con resolución de 25 Å.9

Se pueden observar diferencias a nivel de subunidades, a la vez que similitudes en la organización de TERT.9

La telomerasa humana consiste en un dímero, conteniendo cada monómero una subunidad TER y una subunidad TERT, además de proteínas accesorias. Dichos monómeros están unidos por una región de bisagra flexible. Los autores sugieren que la telomerasa humana debe ser dimérica para poder extender dos extremos teloméricos en paralelo, facilitando que las cromátidas hermanas presenten la misma longitud en sus telómeros.9

Estructura tridimensional de la telomerasa humana. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66

Por otro lado, la telomerasa de Tetrahymena es monomérica, y es funcional en esa forma. Contiene una subunidad TERT, una subunidad TER y proteínas accesorias. La subunidad TERT es próxima a la TER, y además, posee semejanzas estructurales en relación a la telomerasa humana.9

Estructura tridimensional de la telomerasa de Tetrahymena. Sandin, S., & Rhodes, D. (2014). Telomerase structure. [Figura]. Recuperado de https://reader.elsevier.com/reader/sd/pii/S0959440X14000189?token=11A843E5366C91AC144D76C37CCDF9F6AAF6ACEBB1EC83F44402BAE0B18D6BAC8988B087E1B9F41CE814D5AA27E4EC66

Funcionamiento de la telomerasa  

La replicación del DNA romosómico se realiza gracias a DNA polimerasas que pueden extender las cadenas a partir de un RNA cebador y en extremo 5’ → 3’. Dichos cebadores se reemplazarán por DNA y se unirán a las nuevas cadenas de DNA por las DNA ligasas.10

Cuando llegamos a los extremos del cromosoma se plantea un problema. La hebra cuyo molde es la cadena conductora 3’ → 5’, seguirá sintetizándose desde el último origen de replicación hacia el extremo final en dirección 5’ → 3’.10

Por otra parte, la hebra copiada a partir de la cadena retardada 5’ → 3’, contiene fragmentos de Okazaki. Se plantea la dificultad de que en el último fragmento de Okazaki, el RNA cebador no puede ser reemplazado por DNA, ya que al no haber una secuencia adyacente, no hay posibilidad de que actúen las DNA polimerasas. Debido a esto, la hebra sintetizada de la cadena retrasada, perderá entre 50 y 100 nucleótidos en su extremo 5’ con respecto a su molde.10

Para evitar la pérdida de información genética, ya se ha comentado que en los extremos 3’ de las hebras cromosómicas se encuentra el DNA telomérico rico en G, adyacente a la última secuencia de DNA que se puede replicar por la DNA polimerasa. Aunque el DNA telomérico contiene secuencias repetidas en tándem, podría desaparecer después de varios ciclos de replicación. Debido a esto, encontramos la enzima telomerasa, que va a prolongar la secuencia telomérica.10

En el primer paso de la síntesis de DNA telomérico, la telomerasa se recluta a través de la interacción de TPP1 de la shelterina con el dominio N-terminal de su subunidad catalítica TERT. Además, el extremo 3’ G-overhang del telómero se coloca en el sitio activo de TERT alineándose con el RNA (TER) a través de la formación de pares de bases.9 Este RNA es complementario a la cadena de DNA rica en G y aparea parcialmente con ella, proporcionando un molde para la síntesis de copias de la unidad repetida. Los desoxinucleótidos se añaden de novo al extremo 3’ de la cadena rica en G. Después de que se hayan añadido varios nucleótidos se produce una translocación de la telomerasa hacia el extremo del telómero y se reinicia el proceso.10

Se producen unos 10.000 pares de nucleótidos en el extremo 3’, siendo dicha hebra más larga que la complementaria. A su vez, esta elongación de la cadena retardada 5’ → 3’, sirve para producir un nuevo espacio para la creación de un fragmento de Okazaki: se sintetiza un RNA cebador, y la DNA polimerasa elonga la cadena en dirección 5’ → 3’.10

Explicación de la función de la telomerasa. Paniagua, R., Nistal, M., Sesma, P., Álvarez-Uría, M., Fraile, B., Anadón, R. & Sáez, F. J. (2002). Citología e histología vegetal y animal. [Figura].

En humanos, la telomerasa está activa en las células embrionarias pluripotenciales y las células madre germinales, sanguíneas o de tejidos adultos en continua renovación. Por otra parte, está reprimida en el tejido somático, limitándose así su capacidad de división. Sin embargo, en los procesos tumorales esta enzima se reactiva, permitiendo su proliferación y desarrollo.6, 10

Los procariotas constan de un cromosoma circular, por lo que se podrá hacer una copia de   todos los nucleótidos, ya que como la cadena no se interrumpe en ningún momento, el RNA cebador que se generó al comienzo de la copia, podrá ser sustituido por DNA una vez que la copia alcance el final de la cadena.10

Se ha visto que la actividad telomerasa puede encontrarse en las fases G1, S y G2 a lo largo de un ciclo celular. A su vez, se da una represión cuando las células entran en G0 debido a6:

  • Una falta de factores de crecimiento.
  • Inhibición por contacto de la división celular.
  • Inducción de la senescencia por reversión en una línea celular inmortalizada.
  • Diferenciación.

Regulación

La telomerasa se regula por factores genéticos, epigenéticos y ambientales.11

La regulación de la telomerasa se puede dar a través del factor TRF1, que actuaría como un supresor de la elongación telomérica. Su mecanismo de acción consiste en la unión al DNA telomérico de doble cadena, impidiendo la acción de la telomerasa. Dicho factor se encarga de establecer un feedback negativo que estabiliza la longitud telomérica en la interfase y la mitosis.12   Para que este proceso se lleve a cabo se ha descubierto que se necesita que TRF1 interactúe con TIN2.6

El cese de la actividad de la telomerasa en los tejidos embrionarios se puede dar a través de la represión del gen hTERT o a través de empalmes alternativos del transcrito hTERT, que daría lugar a proteínas sin acción transcriptasa inversa.13

Existen factores epigenéticos tales como metilación de islas CpG, metilación de histonas y acetilación, que son importantes para la transcripción de TERT.11

Cáncer

El cáncer es un conjunto heterogéneo de trastornos que se caracterizan por la presencia de células que no responden a los controles normales de la división, lo que hace que estas células cancerosas se dividan rápidamente y de forma continua, generando tumores que privan de nutrientes a los tejidos sanos.2

Varios autores afirman que en las células somáticas humanas, el potencial de proliferación restringido permite unas 50-70 divisiones celulares, alcanzando después la senescencia.5 El concepto de senescencia celular engloba a todas las respuestas que genera una célula mitóticamente competente frente a estímulos capaces de inducir su malignización, es decir, generar un cambio neoplásico en ella. Por tanto, se produce la transformación morfológica y funcional de la célula a un fenotipo senescente y se permite una detención de su crecimiento. Esto hace pensar que la senescencia es un mecanismo de seguridad que surgió para evitar la tumorigénesis en células que posean riesgos neoplásicos (como acortamiento/ alteración telomérica, daños DNA, proteína RAS mutada).14

Respecto al acortamiento telomérico mencionado anteriormente, se ha visto que en hongos, los telómeros cortos posibilitan el daño al DNA, la liberación factores de transcripción y la remodelación de la heterocromatina.14

Otros estudios han visto que si la reducción telomérica supera un límite mínimo de longitud, se crean impedimentos para una correcta separación cromosómica en la mitosis, debido a la aparición de asociaciones teloméricas (tas). Esto provoca inestabilidad cromosómica, que podrá dar lugar a errores genéticos, importantes en procesos neoplásicos como amplificación génica y pérdida de heterocigosidad. Las células que vayan acumulando tas pueden acabar perdiendo regiones repetitivas ricas en guanina, favoreciendo así dichos mecanismos neoplásicos.6

Las tas consisten en la unión de los extremos de dos o más cromosomas, pero sin pérdida aparente de material genético. Pueden producirse en una cromátida o en ambas (simple o doble cromátida).6

Tas de simple cromátida en metafase. Cottliar, A. S., & Slavutsky, I. R. (2001). Telómeros y actividad de telomerasa: su participación en el envejecimiento y el desarrollo neoplásico. [Imagen]. Recuperado de http://medicinabuenosaires.com/demo/revistas/vol61-01/3/v61_n3_p335_342.pdf

Algunos autores proponen que la formación de tas estaría asociada a replicaciones defectuosas de los telómeros, traduciéndose en pérdidas de las secuencias teloméricas tras cada ciclo, aumentando así la probabilidad de producir fusiones cromosomales. Los mecanismos por los cuales esto ocurre apuntan al fallo de la enzima telomerasa, tal y como se ha visto en células de ratones.6

Las tas se han descrito tanto en tumores sólidos, como en neoplasias hematológicas. A su vez también se han encontrado en células infectadas por virus, células con fenotipo senescente y patologías genéticas como síndrome de Turner. Sin embargo, no se ha visto este fenómeno en células normales, ya que están protegidas de la unión entre cromosomas mediante sus telómeros.6

La mayor parte de los tumores malignos presentan la enzima telomerasa activa, lo que hace que las células adquieran la capacidad de proliferar de manera ilimitada. Sin embargo, esto no ocurre en los tumores benignos, que se caracterizan por la ausencia de la telomerasa.15

El promotor del gen de hTERT es rico en guanina y citosina y presenta numerosos sitios de unión para múltiples proteínas, por lo que su expresión está muy controlada. Por ejemplo, este gen presenta sitios para la unión de los dedos de zinc del factor de transcripción SP1 y para la unión de otras proteínas como USF1/2, MYC, MAX, MXD1 o el factor de transcripción TFII-I. Algunos factores que producen una estimulación de la expresión de hTERT son c-MYC, SP1 y los factores de transcripción ETS.16

Las mutaciones del gen hTERT se pueden producir en dos sitios de la secuencia en los que tienen lugar transiciones C-T, y ambas dan lugar a un mismo ácido nucleico de 11 pares de bases, que presenta una secuencia para la unión de los factores ETS. Aunque el papel de estos factores todavía no está muy claro, se sabe que la unión del ETS-2 al promotor de hTERT está asociada con la activación de la telomerasa mediada por el factor de crecimiento epidérmico (EGF) en el cáncer de pulmón.16 

Mutaciones del promotor del gen hTERT. Adaptado de: Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. [Figura]. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915101/pdf/13073_2016_Article_324.pdf

Por otro lado, también se cree hTERT podría tener otro papel en el cáncer, además de intervenir en el alargamiento de los telómeros. Se ha observado que el aumento de la expresión de TERT daba lugar a linfomas de linfocitos T en células del timo de ratones sin cambios significativos en la longitud de los telómeros. Asimismo, se ha visto que TERT se asocia indirectamente con genes como el de la IL-6, la IL-8 o el TNFα (factor de necrosis tumoral), los cuales intervienen en los procesos de inflamación y de progresión del cáncer.17

Por tanto, una de las mutaciones que se producen en muchos cánceres, como en glioblastomas, liposarcomas o melanomas primarios, es la mutación del promotor proximal del gen de TERT de la telomerasa. Sin embargo, no se conoce por qué la frecuencia de esta mutación es menor en otros cánceres bastante comunes, como el cáncer de pulmón, el cáncer de colon, el cáncer de ovario o el cáncer de próstata. Por tanto, se piensa que no es necesario que las células presenten telomerasa activa para que se desarrolle el cáncer, sino que solo se requiere algún mecanismo que mantenga la longitud de los telómeros.15 

De hecho, en algunos cánceres en los que no se detecta la telomerasa existe un mecanismo alternativo de alargamiento de los telómeros, el cual recibe el nombre de ALT (alternative lengthening of telomeres). Además, los tumores telomerasa-positivos pueden pasar a tener el mecanismo ALT y, por tanto, convertirse en resistentes a los fármacos dirigidos frente a la telomerasa. Este mecanismo ALT se basa en copiar la secuencia telomérica mediante recombinación homóloga. Las células que lo presentan suelen tener una longitud de los telómeros muy variada y gran cantidad de ADN telomérico extracromosómico.18

El alargamiento alternativo de los telómeros se ha encontrado en osteosarcomas, tumores pancreáticos neuroendocrinos, tumores astrocíticos, leidomiosarcomas y sarcomas pleomórficos indiferenciados. Se cree que este mecanismo se activa cuando se producen mutaciones en las proteínas ATRX o DAXX y/o en la histona H3.3 o por fallos en su expresión, lo cual se ha observado en tumores del sistema nervioso central y en tumores pancreáticos neuroendocrinos.18 La histona H3.3 se incorpora a regiones teloméricas y sitios de transcripción y se asocia con cromatina activa, para lo cual requiere la presencia de ATRX y DAXX, lo que impide la recombinación telomérica. Si existe una mutación en una de estas proteínas, se alterará la incorporación de la H3.3 a la cromatina, lo que modificará la heterocromatina telomérica. Esto conducirá a una desestabilización de los telómeros y a un aumento de la recombinación homóloga en ellos, facilitándose así el mecanismo ALT. 18, 19, 20 Además, la mutación de los genes que dan lugar a ATRX o a DAXX puede aumentar la expresión del RNA TERRA, que se trata de un RNA no codificante que inhibe la actividad de la telomerasa. Este RNA TERRA también estimula la formación de un “loop R” en los telómeros, lo que induce ALT.17

Envejecimiento.

Uno de los procesos que contribuye al envejecimiento es el acortamiento de los telómeros.2 Se propone que el DNA telomérico, que protege los extremos cromosómicos de la recombinación,  actuaría como un “reloj mitótico”, el cual induciría la salida del ciclo celular mediante la senescencia una vez que los telómeros se acorten.6

Los telómeros se pueden considerar metafóricamente como un “reloj mitótico”. Imagen sin copyright. Recuperada de: https://pixabay.com/.

Para la comprensión del proceso del envejecimiento, se han llevado a cabo estudios en los que se han empleado ratones que no tenían un gen funcional de la telomerasa, por lo que en ellos no se expresaba esta enzima. Se observó que los telómeros de estos ratones se iban acortando progresivamente y, tras varias generaciones, los animales presentaban signos de envejecimiento prematuro (caída del pelo, aparición de canas o retraso en cicatrización de heridas).2 

Además, en el año 2012, científicos de Reino Unido realizaron una investigación sobre la longitud de los telómeros en pinzones y observaron que los pájaros que tenían telómeros más cortos eran menos longevos que los pájaros que tenían telómeros más largos.2

Otros estudios han revelado que la disfunción telomérica (relacionada con las proteínas de respuesta al daño del ADN) aumentan con la edad en preparaciones in vivo en la piel de primates y el hígado, tracto digestivo y pulmones de ratones.21 

Por tanto, según estos resultados, podemos afirmar que hay cierta relación entre el envejecimiento y la longitud de los telómeros.

La longitud inicial de los telómeros puede variar entre distintos individuos. En mamíferos, la tasa de acortamiento de los telómeros es igual en todos los tejidos del mismo organismo (entre 50 y 200 nucleótidos por duplicación).6, 22  

Los telómeros se van acortando progresivamente en cada ciclo celular y esto hace que llegue un momento en el que no se pueda unir el complejo de la shelterina, por lo que se desestabiliza el “loop T”. Esto provoca la exposición del extremo del cromosoma, el cual es reconocido por la maquinaria de reparación del DNA como una rotura de la doble cadena de DNA. De hecho, algunos estudios han demostrado que la eliminación del TRF2 del complejo de la shelterina provocaba el reclutamiento y la activación de proteínas como 53BP1, ATM o la histona H2AX, que están implicadas en la respuesta al daño del DNA. Además, se ha visto que esta respuesta al daño, se produce específicamente en la región telomérica cuando POT1 se separa del telómero. Por otro lado, dicha maquinaria reparativa del DNA también puede dar lugar a la activación de la proteína p53, que estimula la reparación del DNA, la detención del ciclo celular, la senescencia y la apoptosis.21

Se han hallado evidencias de que la senescencia puede estar relacionada con el envejecimiento a través de la acumulación de células con fenotipo senescente en los tejidos, ya que éstas pueden resistir más los estímulos apoptóticos. A su vez, dichas células expresan en mayor frecuencia algunas moléculas de secreción (metaloproteinasas de la matriz junto a otras enzimas capaces de degradar, factores de crecimiento, citocinas inflamatorias), las cuales pueden alterar el entorno local del tejido al que se vierten. La acumulación de dichas células y su hipersecreción provocan la destrucción de la integridad y la funcionalidad tisular.14

Debido a la perturbación tisular, se ha sugerido que las células senescentes puedan facilitar la expresión de fenotipos neoplásicos de otras células mutadas.14

La extensión telomérica ha sido diana de numerosos estudios. Se ha visto que esta longitud telomérica es muy variable entre individuos de la misma edad. Además, dicha longitud pasará a ser más heterogénea entre los diferentes tejidos en la vejez.11

Otro dato de interés que se ha encontrado es que, aunque no haya diferencias de longitud telomérica entre los recién nacidos varones y mujeres afroamericanos y caucásicos, a medida que estas poblaciones pasan a edad adulta, los individuos afroamericanos conservan unos telómeros más extensos que los caucásicos. Además, generalmente los varones adultos tienen los telómeros más cortos que las mujeres adultas. Se piensa que la tasa de acortamiento telomérico es menor en la población femenina debido a la acción estimulante del estrógeno sobre la telomerasa, tal y como se ha comprobado in vitro.11

La longitud de los telómeros estará determinada por factores genéticos y ambientales. Al poseer muchos residuos de G, los telómeros son más susceptibles al estrés oxidativo. Además, se ha comprobado que en células como las del endotelio, el estrés oxidativo disminuye en gran medida la actividad telomerasa. Por lo tanto, si se añaden antioxidantes, se enlentece el acortamiento telomérico al promover a la enzima telomerasa (comprobado en cultivos celulares).11

De esto se deduce lo siguiente: si evitamos el estrés psicológico, se produce menos estrés oxidativo, y por lo tanto prolongamos más la actividad telomerasa, así como los telómeros. Estudios han demostrado que eventos adversos, maltrato infantil, enfermedades crónicas, también parecen ser la causa de unos telómeros más cortos de cara al futuro.11

A: Longitud media telomérica en individuos con estrés alto y con estrés bajo. B: actividad media de la telomerasa en  individuos con estrés alto y con estrés bajo. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. [Figura]. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC534658/pdf/pnas-0407162101.pdf

Existen datos sobre los hábitos de vida, que también están relacionados con la longitud telomérica11:

  • Los fumadores tienen más estrés oxidativo, por tanto, menor longitud telomérica.
  • El deporte influye de manera positiva sobre dicha longitud.
  • Personas que, debido a su dieta, presentaban niveles más bajos de ácido docosahexaenoico y ácido eicosapentaenoico, sufrían de un acortamiento telomérico más veloz.
Hábitos de vida que influyen en la longitud telomérica. Mientras que los individuos fumadores sufrirán de un acortamiento teloméricos precoz, los individuos deportistas conservarán mejor la longitud de sus telómeros. Imágenes sin copyright. Recuperadas de: https://pixabay.com/.

Patologías relacionadas

Disqueratosis congénita/ Síndrome de  Zinsser-Engman-Cole

La disqueratosis congénita fue la primera patología en la que se identificaron mutaciones en la telomerasa humana. Dicha enfermedad cursa con: pigmentación anormal de la piel, distrofia de las uñas, y leucoplasia oral (placa blanca localizada en la mucosa oral que puede ser un factor de riesgo para el cáncer oral23). Además hay otro síntomas como tales como retraso en el desarrollo, atrofia testicular, pérdida prematura del cabello e incapacidad funcional de algunos órganos (siendo la deficiencia de la médula ósea, la principal razón de mortalidad prematura).5

En esta patología se ha detectado la mutación del gen DKC1, situado en el cromosoma X, dando lugar a la disqueratosis congénita ligada al cromosoma X. La consecuencia de esto es una sustitución de aminoácidos en la posición 353 de Alanina por Valina, afectando a la disquerina. Dicha proteína es 1 de las 3 de las proteínas accesorias implicadas en la estabilidad y la acumulación de TER (RNA de la telomerasa humana). Debido a esto los niveles de TER están disminuidos, y por tanto, sus telómeros están más reducidos que sus respectivos controles normales.24,25

Se crea inestabilidad cromosómica que afecta más a tejidos de rápida proliferación, tales como: médula ósea, piel y mucosa gastrointestinal.24 

Distrofia de uñas producida por la disqueratosis congénita. Smoje, G., Dal Borgo, A., Cuevas, M., Núñez, L., Bolte, C., & Martinez, W. (2004). Disqueratosis congénita ligada al cromosoma X. [Imagen]. Recuperado de https://scielo.conicyt.cl/scielo.php?pid=S0370-41062004000600007&script=sci_arttext&tlng=en 
Leucoplasia oral producida por la disqueratosis congénita.  Smoje, G., Dal Borgo, A., Cuevas, M., Núñez, L., Bolte, C., & Martinez, W. (2004). Disqueratosis congénita ligada al cromosoma X. [Imagen]. Recuperado de https://scielo.conicyt.cl/scielo.php?pid=S0370-41062004000600007&script=sci_arttext&tlng=en 

Anemia aplásica

Es un síndrome hereditario que cursa en la disqueratosis congénita autosómica dominante.26 

Aparte de los síntomas descritos anteriormente de una disqueratosis congénita, la anemia aplásica produce un trastorno hematológico que viene dado por: la reducción de los eritrocitos, fallo de médula ósea, y patologías hepáticas y pulmonares.5

Este tipo de anemia es ocasionado por una mutación en el gen hTR que codifica para TER.25,26 También se han visto mutaciones en TERT en la disqueratosis congénita autosómica dominante.27

Explicación gráfica del fallo de la acción de la telomerasa debido a una mutación en los genes que codifican para TERT o TER (hTR). Armanios, M. (2012). Telomerase and idiopathic pulmonary fibrosis. [Figura]. Recuperado de  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292861/pdf/nihms336532.pdfhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292861/pdf/nihms336532.pdf

Fibrosis pulmonar idiopática

Es una patología crónica y progresiva que cursa con una fibrosis pulmonar irreversible.5 Desde el diagnóstico, los pacientes viven de promedio 3 años.27

Las bases patológicas radican en la mutaciones de genes codificantes para TER y TERT.27

Fibrosis pulmonar idiopática en la cual se producen infiltrados reticulares. Se ve la progresión de la patología a diferentes edades: 54, 59, 61 años. A la edad de 61, la paciente fallece por insuficiencia respiratoria. Armanios, M. (2012). Telomerase and idiopathic pulmonary fibrosis. [Figura]. Recuperado de  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292861/pdf/nihms336532.pdfhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292861/pdf/nihms336532.pdf

Dicha patología también se asocia con la disqueratosis congénita.27

Síndrome de Werner

El síndrome de Werner es producido por una mutación del gen WRN, que codifica para la helicasa Recq, que es necesaria para la replicación de los telómeros. Cuando esta enzima es defectuosa, los telómeros se acortan de forma prematura, lo que hace que aparezcan signos de envejecimiento en la adolescencia y primeras etapas de la adultez, como piel arrugada, encanecimiento, cataratas o atrofia muscular.2

Paciente con síndrome de Werner a los 15 años (izquierda) y a los 48 años (derecha). Asian scientist.  iPS Cells From Werner Syndrome Patients Established. [Imagen] Recuperado de https://www.asianscientist.com/2014/12/in-the-lab/ips-cells-werner-syndrome-patients-established/

En conclusión, las enfermedades mencionadas anteriormente poseen telómeros más cortos que los controles (sin patologías) con los que son comparados. 

Dianas farmacéuticas

Las posibles dianas farmacéuticas en situaciones de cáncer (supresión de telomerasa) y de envejecimiento (activación de la telomerasa), vendrían resumidas en la siguiente imagen28:

Posibles dianas farmacéuticas en la telomerasa. Jäger, K., & Walter, M. (2016). Therapeutic targeting of telomerase. [Figura]. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962009/pdf/genes-07-00039.pdf

La telomerasa es una buena diana terapéutica ya que está muy expresada en las células cancerígenas en comparación con el resto de las células (por ejemplo, las células somáticas tienen expresión casi nula o nula de la telomerasa) . Además, los procedimientos terapéuticos van encaminados a la subunidad catalítica TERT.28

Algunas potenciales terapias son28:

  • Inhibidores de oligonucleótidos: son oligonucleótidos antisentido o ácidos nucleicos modificados químicamente. Actúan inhibiendo la telomerasa, concretamente sobre la subunidad TER o TERT, o sobre proteínas asociadas. El acortamiento telomérico produce apoptosis o senescencia. Un ejemplo bastante prometedor es el Imetestalt, cuya secuencia oligonucleotídica es complementaria a TER (hTR o TERC) de la telomerasa, inhibiendo dicha subunidad. Dicho compuesto ha sido testado con éxito en glioblastoma (tumor cerebral).28
Estructura y lugar de acción del Imetelstat en la telomerasa. Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. [Figura]. Recuperado de https://link.springer.com/content/pdf/10.1186%2Fs13073-016-0324-x.pdf
  • Inhibidores de molécula pequeña: a partir de inhibidor natural epigalactocatequina-3-galato (EGCG). Por ejemplo, la rapamicina, inhibidor de mTOR, una proteína serín/treonín quinasa encargada de la localización de la subunidad TERT.29
  • Terapia génica dirigida a la telomerasa: dicha terapia se dirige al promotor de genes de la telomerasa de células cancerígenas. Se usan Adenovirus, que al usar el promotor de hTERT, son capaces de replicarse y matar a la célula cancerígena infectada.28
  • Fitoquímicos: moléculas naturales de plantas que tienen efecto inhibitorio de la telomerasa en algunos cánceres (alicina, curcumina, sibilina, etc…). El mecanismo de acción no se conoce del todo, pero se sugiere que afecta a TERT, ya sea en su expresión, actividad o disociación de la Hsp90 co-chaperona.28

Otro fármaco de importante mención es la telomestatina, un potente inhibidor de la telomerasa extraído de Streptomyces anulatus.30

Dicha molécula posee similitud estructural con el G-cuadruplexo. Su habilidad inhibitoria permite crear con mayor facilidad los G-cuadruplexos o estabilizarlos intramolecularmente, en caso de que ya estuvieran formados.30

Estructura del G-cuadruplexo (A) comparada con estructura de la telomestatina (B). Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K., & Hurley, L. H. (2002). Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. [Figura]. Recuperado de https://pubs.acs.org/doi/pdf/10.1021/ja017308q

De este modo, la telomerasa no puede alargar el telómero porque no es capaz de desorganizar los G-cuadruplexos, y se produce senescencia de tipo Hayflick, que es el envejecimiento celular provocado por desgaste de telómeros.

Modelo tridimensional del acoplamiento telomestatina/G-cuadruplexo. Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K., & Hurley, L. H. (2002). Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. [Figura]. Recuperado de https://pubs.acs.org/doi/pdf/10.1021/ja017308q

Conclusión

Los telómeros y la telomerasa son unas estructuras moleculares muy importantes a la hora de comprender procesos naturales como el envejecimiento, y procesos patológicos como el cáncer.

La integridad de los cromosomas en sus extremos está mantenida por la telomerasa, y el acortamiento de dichas zonas produce senescencia, envejecimiento o cáncer.

En muchas ocasiones, el cáncer presentará aumentada la actividad telomerasa, por lo que dicha enzima es una diana terapéutica bastante prometedora a la hora de intentar erradicar patologías de origen tumoral. 

Hay que tener en cuenta que la telomerasa es un elemento destacado en todos los procedimientos relacionados con los telómeros, pero no hay que olvidar la interacción que ejercen otros factores conocidos y los que faltan por descubrir. 

De cara al futuro, la investigación en este campo permitirá una mejor comprensión global de los telómeros, con importantes repercusiones clínicas.

Bibliografía

  1. Chuaire, L. (2006). Telómeros y telomerasa: breve recuento de una historia iniciada por Hermann Müller y Barbara McClintock. Colombia Médica, 37(4), 332-336.
  2. Pierce, B. A. (2016). Genética: Un enfoque conceptual. Madrid, España: Ed. Médica Panamericana.
  3. Hernández Fernández, R. A. (1999). Telómeros y telomerasas. Revista Cubana de Investigaciones Biomédicas, 18(2), 121-129.
  4. Blackburn, E. H. (1991). Structure and function of telomeres. Nature, 350(6319), 569.
  5. Gómez, D. E., Armando, R. G., & Farina, H. G. (2014). Telomerasa y telómero: su estructura y dinámica en salud y enfermedad. Medicina (Buenos Aires) 74, 69-76
  6. Cottliar, A. S., & Slavutsky, I. R. (2001). Telómeros y actividad de telomerasa: su participación en el envejecimiento y el desarrollo neoplásico. Medicina (Buenos Aires), 61, 335-42.
  7. Maciejowski, J., & de Lange, T. (2017). Telomeres in cancer: tumour suppression and genome instability. Nature reviews Molecular cell biology, 18(3), 175.
  8. Shay, J. W. (2018). Telomeres and aging. Current opinion in cell biology, 52, 1-7.
  9. Sandin, S., & Rhodes, D. (2014). Telomerase structure. Current opinion in structural biology, 25, 104-110.
  10. Paniagua, R., Nistal, M., Sesma, P., Álvarez-Uría, M., Fraile, B., Anadón, R. & Sáez, F. J. (2002). Citología e histología vegetal y animal. Madrid, España: McGraw-Hill Interamericana.
  11. Zhu, H., Belcher, M., & Van Der Harst, P. (2011). Healthy aging and disease: role for telomere biology? Clinical science, 120(10), 427-440.
  12. Van Steensel, B., & De Lange, T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature, 385(6618), 740.
  13. Ulaner, G. A., Hu, J. F., Vu, T. H., Giudice, L. C., & Hoffman, A. R. (1998). Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer research, 58(18), 4168-4172.
  14. Pardo Andreu, Gilberto, & Delgado Hernández, René. (2003). Senescencia celular y envejecimiento. Revista Cubana de Investigaciones Biomédicas, 22(3), 204-212.
  15. Shay, J. W. (2016). Role of telomeres and telomerase in aging and cancer. Cancer discovery, 6(6), 584-593.
  16. Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome medicine, 8(1), 69.
  17. Akincilar, S. C., Unal, B., & Tergaonkar, V. (2016). Reactivation of telomerase in cancer. Cellular and Molecular Life Sciences, 73(8), 1659-1670.
  18. Shay, J. W., Reddel, R. R., & Wright, W. E. (2012). Cancer and telomeres—an ALTernative to telomerase. Science, 336(6087), 1388-1390.
  19. Heaphy, C. M., De Wilde, R. F., Jiao, Y., Klein, A. P., Edil, B. H., Shi, C., … & Offerhaus, G. J. (2011). Altered telomeres in tumors with ATRX and DAXX mutations. Science, 333(6041), 425-425.
  20. Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., … & Hovestadt, V. (2012). Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226.
  21. Victorelli, S., & Passos, J. F. (2017). Telomeres and cell senescence-size matters not. EBioMedicine, 21, 14-20.
  22. Bernadotte, A., Mikhelson, V. M., & Spivak, I. M. (2016). Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY), 8(1), 3.
  23. Moles, M. G., & González-Ruiz, L. (2018). Leucoplasia oral, una revisión de los aspectos esenciales de su diagnóstico y tratamiento. Actualidad médica, 103(803), 44-46.
  24. Smoje, G., Dal Borgo, A., Cuevas, M., Núñez, L., Bolte, C., & Martinez, W. (2004). Disqueratosis congénita ligada al cromosoma X. Revista chilena de pediatría, 75(6), 547-550.
  25. Núñez Quintana, A., Nordet Carrera, I., Menéndez Veitía, A., & González Otero, A. (2004). Neutropenias congénitas. Revista Cubana de Hematología, Inmunología y Hemoterapia, 20(1)
  26. Vulliamy, T., Marrone, A., Dokal, I., & Mason, P. J. (2002). Association between aplastic anaemia and mutations in telomerase RNA. The Lancet, 359(9324), 2168-2170.
  27. Armanios, M. (2012). Telomerase and idiopathic pulmonary fibrosis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 730(1-2), 52-58.
  28. Jäger, K., & Walter, M. (2016). Therapeutic targeting of telomerase. Genes, 7(7), 39.
  29. Miwa, S., & Saretzki, G. (2017). Telomerase and mTOR in the brain: the mitochondria connection. Neural regeneration research, 12(3), 358.
  30. Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K., & Hurley, L. H. (2002). Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. Journal of the American Chemical Society, 124(10), 2098-2099.
Imagen relacionada