El error de Pauling y la carrera por la estructura del ADN

C. Menor-Salván. Ver. 2.5. Abril 2023

El descubrimiento de la estructura del ADN fue uno de los logros científicos destacados del siglo XX. En él participaron además de los conocidos Watson y Crick y Rosalind Franklin, una serie de científicos relevantes, cuyo nombre apenas se recuerda; sin sus contribuciones, no podemos entender la historia completa. Esta aventura nos enseña además que, en la ciencia, aunque se hagan famosos los «goleadores», el conocimiento se construye de modo colectivo y los errores pueden ser tan importantes como los aciertos. Delicioso es el fruto que surge tras el amargor del error y la ignorancia, y de ellos es desde donde se construye la ciencia. Además, los aspectos mundanos pueden ser tan relevantes como los técnicos.

El ADN se descubrió en el siglo XIX, pero se tardó más de medio siglo en revelar su estructura

No hay que confundir el descubrimiento de la estructura del ADN, con el descubrimiento del ADN en sí. Se atribuye el descubrimiento del ADN al químico suizo Friedrich Miescher, entre 1860 y 1874, siendo Phoebus Levene quien dio, en 1909, su descripción química precisa. Miescher propuso, en 1874, que, de alguna manera la «nucleína» (nombre que dió al ADN) era la «causa específica de la fertilización».

Levene acuñó el término ‘ácido nucleico’. Propuso la ‘teoría del tetranucleótido’, sugiriendo que el ADN estaba compuesto por cuatro bases, un azúcar y fosfato. Sin embargo, en aquel momento, aún no existía la tecnología necesaria para entender la arquitectura de la molécula.

Aspecto real del DNA puro. Esta muestra se obtuvo de timo de vaca, la fuente usual de DNA para su estudio. De hecho, en la época del descubrimiento de su estructura, no se le llamaba DNA sino «ácido timonucleico». Imagen: C. Menor-Salván/UAH

Pasó casi medio siglo hasta que se determinó su estructura, lo cual era un problema muy complicado, tanto tecnológicamente como por la dificultad para obtener datos de la molécula. Y no había nadie mejor para lograrlo que el genial químico estadounidense Linus Pauling (1901-1994), quien estuvo a las puertas de conseguirlo antes de que Watson, Crick, Wilkins y Franklin publicaran su famoso artículo triple de abril de 1953.

Pauling fue uno de los científicos más relevantes del siglo XX. Recibió el premio Nobel en Química en 1954 por su contribución al conocimiento de los enlaces químicos. Para esa fecha había realizado tantos descubrimientos importantes en numerosos campos de la Química y la Biología, que, cuando le llamaron para comunicarle la concesión del premio, pidió a su interlocutor que le leyese la comunicación, pues no tenía claro por cuál de sus trabajos recibía el premio.

Pauling había resuelto otro gran problema: la estructura de las proteínas. Con Robert Corey y Herman Branson, publicaron en 1951 las estructuras secundarias que ahora ilustran los libros de texto. Este importante trabajo era ya suficiente para que tuviera fama imperecedera en el mundo de la Ciencia, pero Pauling era ambicioso y estaba obsesionado con resolver todas las estructuras de macromoléculas biológicas. Así, era el favorito en la carrera por el ADN. Él mismo estaba convencido de ello.

Astbury, Bell y la triple hélice de Pauling

Una brillante química británica, Florence Bell, presentó, en 1939, su tesis sobre la estructura del ADN y las proteínas, bajo la dirección de William Astbury. En ella, Bell y Astbury presentaron, por primera vez en la Historia, imágenes de difracción de rayos X de ADN. Esta compleja técnica, que se utiliza desde la Bioquímica Estructural hasta la Mineralogía, es esencial para resolver las estructuras macromoleculares así como las estructuras de los sólidos cristalinos. Y ahí está el problema: EL ADN es muy difícil de cristalizar y tiene una peculiaridad clave que descubrió Rosalind Franklin: puede cambiar de forma.

Portada de la tesis doctoral de Florence Bell. Su lectura es muy interesante, está redactada con un tono honesto y cálido, y constituye un hermoso documento sobre el nacimiento de la Biología Molecular. Después, con el inicio de la Segunda Guerra Mundial, todo quedó en un impasse; entre tanto, Bell se casó con un oficial norteamericano y emigró a EEUU tras la guerra. A pesar de los esfuerzos de Astbury, Bell no quiso continuar su carrera científica, aunque trabajó como química en EEUU.

Bell dio un esbozo de la estructura del ADN, formado por largas fibras con las bases colocadas en paralelo y unidas, a modo de cuentas de collar, por el fosfato, pero no pudo avanzar más. Su tesis relata los intentos para obtener una muestra de ADN lo suficientemente cristalina, que terminaban en imágenes de difracción borrosas. El ADN se resistía a revelar su estructura. Había algo que Bell ignoraba: el ADN no tiene una única forma. Al preparar el ADN puro, se formaba una mezcla de lo que ahora conocemos como ADN B y ADN A, que hacían muy difícil interpretar los datos.

Fue Rosalind Franklin, 15 años después, quien logró lo que Bell no pudo: obtener una forma única de ADN cristalino, en su forma canónica ADN B, con el que hizo posible la famosa foto 51, que aclaró definitivamente la estructura.

Florence Bell propuso en su tesis de 1939 este esbozo de la estructura de ADN, en el que los nucleótidos, unidos por enlaces fosfodiester 3′-5′, formaban largas cadenas con las bases apiladas. Si Bell hubiera conseguido mejores datos de DRX, seguramente ella misma, o con Pauling, no habrían tenido ningún problema en determinar la estructura. Imagen: F. Bell, 1938

Aun así, Bell proporcionó datos importantes, gracias a una imagen particularmente clara, la imagen 19, como la distancia entre las bases y que los nucleótidos formaban largas cadenas.

Pauling estudió los resultados de Bell y Astbury, tomando como hipótesis que las bases del ADN se orientan al exterior, para enlazarse con otras moléculas y que los fosfatos se organizan en un patrón similar al de algunos minerales. También tuvo en cuenta otro dato fundamental: el biofísico Robley Williams había logrado, en 1952, obtener una imagen en 3D de una molécula de ADN con un microscopio electrónico. Pauling observó que ese pequeño cilindro podría ser una trenza helicoidal.

Con estas ideas, propuso un modelo en triple hélice, en un artículo enviado, no sin prisas, el 31 de diciembre de 1952. En él, publicado en febrero de 1953, Pauling sugiere que su modelo es todavía algo preliminar y requería refinado. Su colaborador Corey le avisó de que había problemas, como que el modelo no encajaba del todo bien, no se podían incluir iones de sodio, a pesar de que el ADN formaba una sal sódica, y estaba el problema de la repulsión de las cargas del fosfato; Pauling reconoció que su modelo estaba algo «apretado». Pero la prisa estaba justificada: sabía que, en Gran Bretaña, Maurice Wilkins y su equipo estaban obteniendo imágenes de difracción del ADN y que unos entonces desconocidos James Watson y Francis Crick estaban trabajando en un modelo de ADN.

Sin embargo, el modelo de Pauling resultó ser erróneo.

Comparación del modelo erróneo de Pauling (izquierda) y el DNA B canónico de Watson y Crick (derecha). La diferencia fundamental es que Pauling preparó un modelo en el que las bases se orientan hacia el exterior. Pauling pensaba que las bases formarían puentes de hidrógeno con otras moléculas, como proteínas. Sin embargo, aunque encajaba más o menos bien con los datos de Bell y Astbury, el modelo tenía problemas muy profundos, como ignorar las cargas de los fosfatos. Imagen: C. Menor-Salván

Pares de bases y la precaución de Wilkins

El modelo en triple hélice encajaba mas o menos bien con los datos de difracción de rayos X de los que disponía Pauling. Es más, el primer modelo de ADN que idearon Watson y Crick, en 1951, era una triple hélice similar a la de Pauling. La diferencia es que ellos contaron con Rosalind Franklin. Cuando mostraron a Franklin su modelo, ella les dio razones convincentes por las que el modelo no era válido. Franklin ya había observado la importancia del agua y de los iones en la estructura (ella estaba trabajando con la sal sódica del ADN) y de cómo debían distribuirse los fosfatos. Ellos la escucharon y volvieron a los cálculos de un nuevo modelo. En ese momento, Franklin y Wilkins, aunque no estaban a favor de determinar un modelo aún, también pensaban que se trataba de una triple hélice. Tendría que llegar la foto 51, obtenida por Franklin, a despejar las dudas: la molécula de ADN era una doble hélice.

Comparación de la foto de DRX de ADN favorita de Bell, la foto 19 (izquierda) con la histórica foto 51 de Franklin y su doctorando Gosling. Franklin realizó un descubrimiento clave: el ADN se presentaba en dos formas, la forma A y la forma B (actualmente sabemos que hay alguna más), mutuamente intercambiables por deshidratación y rehidratación y con diferente grado de coordinación con el agua. Aislar las formas permitió obtener imágenes de DRX claras, algo que Bell no logró, al obtener mezclas de las dos estructuras.

Las claves científicas del error de la triple hélice de Pauling las explica Rosalind Franklin en su magnífico artículo de 1953, en el que muestra que tenía clara la estructura: los datos de Pauling no eran lo suficientemente resolutivos; además, una hélice con los fosfatos en el interior y las bases en el exterior no encaja, ni con las propiedades del ADN, ni con la química del fosfato; y, no menos importante, Pauling no tuvo en cuenta un hallazgo previo fundamental al que Franklin si da crédito.

En 1947, un joven bioquímico, Michael Creeth, propuso un modelo de ADN formado por dos cadenas unidas por puentes de hidrógeno entre sus bases. Los mentores de Creeth eran Gulland y Jordan, quienes habían demostrado el apareamiento entre bases del ADN. Esta observación, para Franklin, tal como ella misma cuenta en su artículo de 1953, es fundamental. Considerando los pares de bases y los datos de difracción, la famosa doble hélice emergía como la estructura correcta.

Modelo propuesto por Michael Creeth para la estructura del ADN, tal como figura expuesto en el National Centre for Macromolecular Hydrodynamic, en Nottingham (Inglaterra). Actualmente, Bell y Creeth, así como sus mentores, son grandes olvidados en el descubrimiento del ADN.

Consciente de que los datos de Bell y Astbury no tenían resolución suficiente, Pauling escribió a Wilkins, solicitando ver los suyos. Wilkins, que no deseaba que el gran Pauling tomara el control de la investigación, se negó. Suele decirse que Pauling no tuvo oportunidad de reunirse con ellos directamente, debido a que el gobierno de EEUU le denegó la renovación del pasaporte para viajar a Gran Bretaña en 1951. Lo cierto es que el impacto de esta anécdota no fue grande, pues, finalmente, Pauling visitó Inglaterra durante un mes en 1952, coincidiendo con el trabajo clave de Franklin y, durante el cual, lamentablemente, no prestó atención al ADN.

Mientras Pauling, pensando que Wilkins seguiría negándose a colaborar, se centraba en sus trabajos con las proteínas, Franklin y su doctorando Gosling obtenían las imágenes históricas que confirmaron la estructura del ADN. Franklin no tenía inconvenientes para mostrar sus resultados y, si Pauling hubiera hablado con ella directamente, la historia del ADN sería distinta. Es más, ocurrió algo extraño: Franklin mostró sus imágenes a Corey, mano derecha de Pauling. Corey sugirió a Pauling que el modelo de triple hélice no encajaba bien y que había varios problemas. Pero él insistió, pensando que, bueno, ya resolverían los problemas pendientes. No visitar a Franklin y no escuchar a Corey fue un error histórico.

No fue el único error de Pauling. Watson y Crick tuvieron en cuenta otro dato clave: el bioquímico austriaco Erwin Chargaff les explicó que las bases del ADN siguen una proporción muy sencilla, que hoy conocemos como reglas de Chargaff. Estas apoyaban la idea de que las dos cadenas estarían unidas por las bases. Pauling y Chargaff se conocieron en 1947 durante un crucero de vuelta a EEUU y hablaron de ello; pero, considerándole un tipo «molesto y desagradable», Pauling despreció sus observaciones.

El modelo erróneo de Pauling fue el impulso definitivo que llevó a Watson y Crick a publicar, sólo dos meses después, su doble hélice. Cuando el artículo de Pauling apareció en febrero de 1953, los británicos estaban sorprendidos: era un modelo ingenuo, erróneo, similar al que ellos concibieron en 1951 y que Franklin les hizo desechar, y que, como los mismos Watson y Crick comentaron, incluso violaba las reglas químicas básicas del fosfato, expuestas por el propio Pauling en su famoso libro de texto de Química General. Eufóricos por la oportunidad que el error de Pauling les brindaba, era el momento perfecto para arrebatarle la gloria de resolver la estructura del ADN; se apresuraron, entonces, a publicar su modelo antes de que Pauling tuviera tiempo de darse cuenta de su fallo y rehacer su modelo, a la vista de los nuevos datos de difracción de rayos X.

Página del famoso artículo de Watson y Crick, en la que figura su modelo de doble hélice y agradecen específicamente a Wilkins y Franklin por sus contribuciones. Watson y Crick eran teóricos y dependían de los datos experimentales. La foto que se ve en la parte inferior no es de Franklin, sino de Wilkins.

Así, en abril de 1953, tras un acuerdo con Wilkins y Franklin, se publicaron tres artículos: uno por Watson y Crick, otro por Wilkins y el tercero por Franklin y Gosling, detallando la estructura del ADN y los datos esenciales que la sostienen. Sorprende que mucha gente piense que aquel mes se publicó un sólo artículo, firmado por Watson, Crick y Wilkins, y que Franklin fue ignorada completamente. Como ocurre con El Quijote, que todo el mundo lo conoce, pero casi nadie lo ha leído. Sin embargo, la lectura de los artículos aclara cosas, como que, en efecto, no fue un artículo, sino tres, cada uno preparado por los líderes del descubrimiento: Watson y Crick eran los teóricos que desarrollaron el modelo, y Wilkins y Franklin los experimentalistas que lograron preparar el ADN puro y obtener los datos de su estructura. A priori no parece mal arreglo. Con ojos actuales, cada uno de ellos tendría su paper histórico en Nature como IP (Los problemas de índole personal que llevaron a que Wilkins y Franklin publicaran por separado, o por qué publicaron tres papers separados en lugar de uno todos juntos, no son objeto de esta entrada, y es un tema que se discute mucho, aunque para mi forma parte del gossip científico, no de la ciencia en sí)

Aceptando la derrota

Pauling aceptó sus errores con elegancia y, en la Conferencia Solvay de ese mismo abril de 1953, expresó su apoyo al modelo de Watson y Crick:

«Aunque solo han pasado dos meses desde que el profesor Corey y yo publicamos nuestra estructura propuesta para el ácido nucleico, debemos admitir que probablemente esté equivocada; Aunque se podría hacer algo de refinamiento, creo que es muy probable que la estructura de Watson-Crick sea esencialmente correcta»

En 1988, durante una conversación informal en un congreso, Pauling recapitulaba:

«Supongo que siempre pensé que la estructura del ADN era mía para resolver y, por lo tanto, no la perseguí con suficiente agresividad».

Definitivamente, no escuchar las señales de que su modelo no era correcto y su ambición, que le llevó a estar convencido de que era el único que podría resolverla, no le ayudaron.


Anexo 1: Cómo ayudó la foto 51 a revelar la estructura

La técnica de difracción de rayos X (DRX) es y ha sido esencial para la Biología. Es una técnica compleja, costosa y que requiere de una larga formación específica, por lo que los cristalógrafos, como lo fueron Rosalind Franklin, Florence Bell o el propio Pauling, expertos en DRX, son muy valiosos para la investigación y su labor no siempre es suficientemente reconocida. Prácticamente todas las estructuras que podemos encontrar en el Protein Data Bank, por ejemplo, han sido resueltas mediante DRX.

Para obtener un buen patrón de difracción, o difractograma, es necesario disponer de una muestra muy pura del compuesto que se está analizando, uniforme y cristalina (es decir, todas las moléculas de la muestra están ordenadas). Esto fue muy difícil de conseguir con el ADN, en especial por su tendencia a la transición entre ADN A y ADN B según su contenido en agua.

El DNA no tiene una única estructura. Son posibles múltiples conformaciones.

Rosalind Franklin y Raymond Gosling (a quien nadie recuerda, a pesar de haber trabajado en el laboratorio codo con codo con Franklin) consiguieron una imagen excepcional, como hemos visto: la famosa foto 51. Esta foto se reproduce en muchas ocasiones, pero ¿qué significa? ¿cómo se interpreta?

Usando un simple muelle y un puntero laser para entender el patrón de difracción de una hélice

La interpretación completa es muy compleja, pero podemos entenderla de modo sencillo, en especial si usamos un experimento: si tomamos un muelle de boli o cualquier otro muelle pequeño y fino y lo iluminamos con un láser, que tenga el haz cuanto más grueso mejor (de modo que ilumine varias vueltas de hélice al mismo tiempo), el muelle va a difractar la luz laser. Como la diferencia entre la distancia de vueltas del muelle y la longitud de onda del laser es muy alta, el patrón de difracción que se produce es la difracción de campo lejano o difracción de Fraunhofer, que podemos ver al proyectar la luz a una distancia de entre 2 y 6 metros del muelle. El patrón de difracción nos permite medir con mucha precisión las medidas del muelle. Si cambiamos el muelle por moléculas ordenadas de un compuesto, y el láser por un haz fino de rayos X, muy penetrante y de longitud de onda muy pequeña, comparable a las dimensiones de la molécula, obtendremos un patrón de difracción de su estructura.

El patrón de difracción de una estructura en hélice da lugar a una «X» muy característica. El ángulo de la «X» y la distancia entre las manchas luminosas nos permite calcular las medidas de la hélice (ver mas abajo). Con el sencillo experimento del muelle y el puntero láser, podemos reproducir el experimento y los cálculos que realizaron Franklin y Gosling.

Si nos fijamos en las imágenes de Florence Bell, este patrón no está nada claro, debido a las dificultades que tuvo para preparar la muestra. Pauling supo que la molécula de ADN era helicoidal porque vio una imagen de microscopía electrónica.

Otro aspecto clave de la foto 51 es que revelaba claramente que el ADN no estaba formado por una hélice, sino por dos hélices unidas, con un desfase entre ellas. Este desfase daba lugar a los huecos que se pueden ver en la foto. Este dato confirmaba definitivamente que el ADN estaba formado por dos hebras unidas formando una hélice doble. Franklin pudo medir la molécula usando el patrón, obteniendo un ajuste muy bueno con el modelo teórico propuesto por Watson y Crick.

¿Qué habría ocurrido si el modelo de Creeth hubiera sido correcto? El patrón de difracción habría sido completamente distinto. Podemos modelizarlo también mediante la difracción de Fraunhofer de dos alambres paralelos muy juntos:

Esto nos da un patrón de difracción o difractograma lineal:

Como en el caso anterior, con el espaciado entre las manchas luminosas podemos medir la distancia entre los dos alambres. Comparemos este difractograma con el difractograma de rayos X real de un poliester, un polímero lineal formado por cadenas paralelas:

Y aquí vemos el patrón de difracción de un fragmento proteico formado por láminas beta paralelas:

Así queda demostrada la estructura de la molécula usando un método físico clave, la DRX. La verdad es que las cosas son como tienen que ser: si el DNA tuviera la estructura de Creeth, la Biología Molecular sería imposible, y por tanto la vida. Pero eso todavía no lo sabían en los años 1940-1950.


Anexo 2: Extracto de los artículos históricos de abril de 1953

Watson y Crick mencionan el modelo erróneo de Pauling
Último párrafo del artículo de Rosalind Franklin de abril de 1953, relatando sus observaciones y concluyendo que «la idea general no es incosistente con el modelo propuesto por Watson y Crick». Como experimentalista, apoya con sus datos el modelo teórico propuesto. Franklin, además, cita el trabajo clave de Gulland y sus colaboradores, descubridores del apareamiento de bases en el ADN.
El modelo de Pauling fue el ‘punching ball‘ de los tres artículos. Aquí, Franklin discute por qué el modelo de Pauling es erróneo. El modelo de Pauling, a pesar de ello, fue un catalizador de la publicación de estos tres trabajos históricos. El resto del artículo de Franklin es un relato detallado de los datos e interpretación de los análisis por difracción de rayos X.
Primer párrafo del trabajo de Franklin. Aquí relata algo esencial que, a veces, se pasa por alto: el descubrimiento de las formas B y A del ADN. Franklin reconoce aquí a otro científico realmente olvidado por la Historia del descubrimiento del ADN: el noruego Sven Furberg, quien, en 1948, estuvo también a punto de descubrir la estructura del ADN y propuso, por primera vez, que debía tener una estructura helicoidal. Pero Furberg tropezó en la misma piedra que Bell y Astbury…

Referencias

ASTBURY, W. T. & BELL, F. O. (1938) ‘X-Ray Study of Thymonucleic Acid’, Nature, 141(3573), pp. 747–748. doi: 10.1038/141747b0.

Dahm, R. (2008) ‘Discovering DNA: Friedrich Miescher and the early years of nucleic acid research’, Human Genetics, 122(6), pp. 565–581. doi: 10.1007/s00439-007-0433-0.

FRANKLIN, R. E. & GOSLING, R. G. (1953) ‘Molecular Configuration in Sodium Thymonucleate’, Nature, 171(4356), pp. 740–741. doi: 10.1038/171740a0.

Gann, A. & Witkowski, J. A. (2013) ‘DNA: Archives reveal Nobel nominations’, Nature, 496(7446), p. 434. doi: 10.1038/496434a.

Harding, S. E., Channell, G. & Phillips-Jones, M. K. (2018) ‘The discovery of hydrogen bonds in DNA and a re-evaluation of the 1948 Creeth two-chain model for its structure’, Biochemical Society Transactions, 46(5), pp. 1171–1182. doi: 10.1042/BST20180158.

Lake, J. (2001) ‘Why Pauling didn’t solve the structure of DNA’, Nature, 409(6820), pp. 558–558. doi: 10.1038/35054717.

Levene, P. a, Hydrolysis, A. & Rockejeller, T. (1917) ‘Yeast Nucleic’, J. Biol. Chem., 40, pp. 415–424.

Pauling, L. & Corey, R. B. (1953) ‘A Proposed Structure For The Nucleic Acids’, Proceedings of the National Academy of Sciences, 39(2), pp. 84–97. doi: 10.1073/pnas.39.2.84.

Pederson, T. (2020) ‘The double helix: “Photo 51” revisited’, The FASEB Journal, 34(2), pp. 1923–1927. doi: 10.1096/fj.202000119.

Ronwin, E. (1953) ‘The Phospho-Di-Anhydride Formula and Its Relation to the General Structure of the Nucleic Acids’, Science, 118(3071), pp. 560–561. doi: 10.1126/science.118.3071.560.

Schmidt, G. (1950) ‘NUCLEIC ACIDS, PURINES, AND PYRIMIDINES’, Annu. Rev. Biochem, 19, pp. 149–186.

Thompson, J. et al. (2018) ‘Rosalind Franklin’s X-ray photo of DNA as an undergraduate optical diffraction experiment’, American Journal of Physics, 86(2), pp. 95–104. doi: 10.1119/1.5020051.

Watson, J. D. & Crick, F. H. C. (1953) ‘Molecular structure of nucleic acids’, Nature, pp. 737–738. doi: 10.1097/BLO.0b013e3181468780.

Linus Pauling and the race for DNA: http://scarc.library.oregonstate.edu/coll/pauling/dna/index.html

https://www.historyofinformation.com/detail.php?entryid=4425




ADN G-cuadruplexos, diana farmacológica frente al cáncer

Realizado por Ana Jiménez y Cristina Iruela – 3º de Biología Sanitaria, UAH

Los G-cuadruplexos son unas estructuras químicas que llevan años en el punto de mira por su característica estructra y localización. Cada vez se apuesta más por ellos como terapia frente al cáncer dada su interacción con estrucutras y moléculas íntimamente relacionadas con la enfermedad. A continuación se expondrá una breve revisión sobre el tema.

Estructura y función de los ADN-G cuadruplexos

Las secuencias de ADN ricas en guanina pueden plegarse en estructuras secundarias no canónicas de cuatro cadenas denominadas G-cuadruplexos (G4). Estas estructuras secundarias se forman tanto en el ADN como en el ARN. Consiste en 4 guaninas unidas por puentes de hidrógeno de tipo Hoogsteen, en los que cada guanina puede actuar como donante y aceptor de dos puentes de hidrógeno formando una estructura plana denominada tétrada G [1]. 

Dos o más tétradas G se pueden apilar una encima de otra para formar un G-cuadruplexo, siendo esta su unidad estructural. Esta se forman conectando 4 guaninas a través de 8 puentes de hidrógeno. En la tétrada G, se forman dos de estos puentes que emparejan guaninas adyacentes, en los que están involucrados los nitrógenos número 1,7, 2 y el oxígeno 6 de cada nucleótido de guanina [2].

Figura 1
Estructura química de una tétrada G
Tomada de Kolesnikova, S., & Curtis, E. A. (2019). Structure and Function of Multimeric G-Quadruplexes. Molecules (Basel, Switzerland), 24(17), 3074. https://doi.org/10.3390/molecules24173074

Además, es necesaria la presencia de un catión metálico (Na+, K+) para estabilizar la estructura [3].

En el ARN, los G4 formados en la región 5’UTR del ARNm inhiben la traducción dependiente de cap y mejoran la traducción independiente de caperuza mediada por IRES. También influyen en otros mecanismos moleculares que tienen lugar en el ARN, como el empalme, cambios en el marco de lectura, localización del ARNm o la maduración de los miARN [3].

En base a experimentos in vitro, se predijo que los G-cuadruplexos se forman en regiones que albergan un motivo G4 específico. Sin embargo, estudios actuales muestran que también pueden formarse dentro de regiones con bucles formados por 3 o más guaninas por repetición, así como en regiones que no siguen este motivo G4 estricto [1].

No se distribuyen al azar en todo el genoma, sino que abundan en ciertas regiones, como promotores, telómeros, sitios de unión de factores de transcripción u orígenes de replicación. La estabilidad de esta estructura depende, entre otros factores, del número de guaninas por repetición y de la longitud de los bucles [1].

Figura 2
Estructura de los G-cuadruplexos
Nota: B) Una representación 2D de un pliegue G4 típico que muestra los tres cuartetos planos. Las esferas en los vértices de los cuartetos representan una guanina de cada uno de los cuatro G-tripletes. La esfera negra en el centro denota el catión metálico central (Na + , K + ) necesario para estabilizar la estructura G4. (C) Una vista superior de un cuarteto G plano que muestra los enlaces Hoogsteen (líneas discontinuas), los átomos de los mismos y un catión en la cavidad central. Las figuras no están dibujadas a escala.
Fragmento tomado de: Saranathan, N., & Vivekanandan, P. (2019). G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends in microbiology, 27(2), 148–163. https://doi.org/10.1016/j.tim.2018.08.011

La relevancia fisiológica de estas estructuras se debe a la existencia de proteínas que pueden unirse a ellas o desplegarlas. Existen 3 clases de proteínas que interactúan con los G-cuadruplexos descritas en la literatura: proteínas de unión a G-cuadruplexos, estabilizadoras de G-cuadruplexos y desarrolladoras de G-cuadruplexos (como helicasas). Se ha descrito qué mutaciones y/o delecciones en estas proteínas conducen a cambios en la formación de estas estructuras. Lo que, a su vez, puede dar lugar a cambios en las vías biológicas (cambios transcripcionales) y aumentar la inestabilidad del genoma [1].

La formación transitoria de G4 en condiciones termodinámicamente favorables tiene funciones reguladoras importantes dictadas por su ubicación en el genoma [3]. Entre ellas se encuentran la regulación de la transcripción, traducción, replicación del ADN y localización del ARN [4]. Destaca la función de los G-cuadruplexos en relación a la inhibición de la actividad de la telomerasa [3].

Relación con los telómeros + telomerasa + cáncer

Como ya se ha mencionado, los telómeros son un ejemplo de la presencia de G4 cuadruplexos en el genoma de los vertebrados, basándose en la secuencia consenso: (5’-TTAGGG-3’) [5] que evidencia la presencia repetitiva de las guaninas (dicha secuencia es específica para los mamíferos y cambia según la especie de los mismos).

Para comprender la importancia de los telómeros, es clave entender la estructura de los mismos, cuya formación es una respuesta evolutiva al problema encontrado en los extremos 3’ cuando la maquinaria de replicación de nuestras células no puede rellenar el hueco al no tener un extremo 5’ anterior que le sirva de molde para la síntesis de la nueva cadena. Esto tiene como resultado la formación de un T-loop y un D-loop originados por la invasión de un extremo 3’ que sobresalía respecto al extremo 5’ complementario [6]. Además, se encontrará el complejo de Shelterina, el cual poseerá diferentes proteínas que regularán la actividad de la telomerasa, enzima encargada de la elongación de los telómeros por medio de la adición de unidades (TTAGGG).

Esta respuesta evita la pérdida de información en cada ronda de replicación y evitan que la célula reconozca esta región sobrante como un daño en el ADN y lo elimine. De todas maneras, estos telómeros se irán acortando igualmente con el tiempo: acortamiento telomérico de Hayflick, resultando en un punto crítico de longitud activando la llamada senescencia replicativa, siendo este proceso la base del envejecimiento celular que resulta en poner fin a su división [7]. La regulación de dicha senescencia es clave para el organismo para evitar su envejecimiento y como supresor de tumores [8].

Figura 3
Representación de un cromosoma y terminación telomérica
Nota: A) Esquema de un cromosoma indicando la ubicación de un telómero. B) Estructura del telómero: T-loop secuestrando el extremo terminal del cromosoma, y D-loop donde se observa la triple hebra de ADN. C) Complejo Shelterina de proteínas asociadas a los telómeros.
Tomado de Mengual Gomez, Diego & Armando, Romina & Farina, Hernán & Gomez, Daniel. (2014). Telomerasa y telómero: su estructura y dinámica en salud y enfermedad. Medicina. 74. 69-76.

Los G4 tienen un papel de represión de determinados genes en células sanas impidiendo la entrada de la maquinaria necesaria para la replicación y transcripción. En células sanas, estos evitan la expresión de oncogenes como: MYC, sufriendo así un proceso de regulación negativa [5].

Figura 4
Resumen esquemático de los efectos de los ligandos de G4 en las células cancerosas
Tomado de: Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: a promising target for cancer therapy. Molecular cancer, 20(1), 40. https://doi.org/10.1186/s12943-021-01328-4

Lo que ocurre en enfermedades como el cáncer es que el acortamiento de los telómeros se evita hasta tal punto que las células se inmortalizan y escapan al proceso de muerte celular. La base patológica de esto es la activación de la telomerasa la cual está además sobre expresada en los tejidos cancerosos [9], cuya activación será siempre el reflejo de una respuesta anómala. Los G4 presentes en los telómeros de sus células no tendrán la misma eficacia que en las células sanas, puesto que la telomerasa se introduce y favorece la elongación de dicho telómero. Este suceso tendrá como consecuencia el desarrollo del fenotipo inmortal que adoptarán las células del tejido afectado y que se volverán cancerosas [5]. Es importante destacar que la alteración de la unión de los G4 con la telomerasa se ha observado tanto in vivo como in vitro [1]. 

Cabe mencionar las regiones TERRA, región telomérica de RNA no codificante [5]. Esta, es el transcrito resultante del telómero llevado a cabo por la enzima RNA polimerasa II la cual puede aparecer como ARN nucleoplásmico libre o en forma de un nuevo loop en la estructura de los telómeros: R-loop (correspondiente a un híbrido entre ADN y ARN) [8]. 

Cuando el telómero se acorta hasta dicho punto crítico anteriormente mencionado, este R-loop se asocia con el resto de TERRA promoviendo la reparación dirigida por homología (denominada HDR-mediated). Este proceso va a permitir la recombinación del telómero con su propia secuencia perpetuando así su vida celular y evitando la senescencia prematura. Además, este mismo mecanismo será utilizado por algunas células cancerosas para la elongación de los telómeros en caso de no poseer telomerasa funcionando como mecanismo de alargamiento alternativo, siendo la base de los tumores ALT [8].

Paradójicamente, algunos estudios han dado evidencia de la longitud reducida de los telómeros de las células cancerígenas respecto a las células de tejidos libres de cáncer, así como un aumento del número de los G4 en las mismas [5][9]. Para esto se siguen formulando diferentes hipótesis.

Otras utilidades bioquímicas

Además de la función anteriormente mencionada, se han estudiado cada vez más aplicaciones:

  • Son utilizados como sondas, solas o en complejo con hemina, una estructura de porfirina que contiene hierro para detectar la presencia de diferentes ligandos [10].

  • También como transportadores, gracias a su capacidad para secuestrar ligandos, actuando como agentes de administración de fármacos [10].

  • En los últimos años, se ha extendido su uso como fármacos, en concreto como aptámeros (ácidos nucleicos de cadena sencilla aislados de genotecas de oligonucleótidos por selección in vitro), interactuando con biomoléculas, como proteínas e interfiriendo con sus funciones [10].

  • O como dianas farmacológicas explotando su capacidad para interactuar con ligandos específicos, lo que puede alterar funciones importantes si el G-cuadruplexo se encuentra en regiones esenciales en el genoma del virus o de la célula huésped [10]. 
Figura 5
Aplicaciones de los G-cuadruplexos
Nota: Representación gráfica de las principales aplicaciones de los G-cuadruplexos.
Tomado de: Abiri, A., Lavigne, M., Rezaei, M., Nikzad, S., Zare, P., Mergny, J. L., & Rahimi, H. R. (2021). Unlocking G-Quadruplexes as Antiviral Targets. Pharmacological reviews, 73(3), 897–923. https://doi.org/10.1124/pharmrev.120.000230

Telomestatina

En múltiples estudios, se ha propuesto que las mejores dianas farmacológicas serían aquellas que solo se expresasen en las células cancerosas o aquellas que fuesen esenciales para mantener el fenotipo maligno de las mismas. La telomerasa, es una diana clave [6][7][9].

Se trata de un producto natural aislado de Streptomyces anulatus que es un ligando de los G4 teniendo una afinidad muy alta por la secuencia concreta de los telómeros: (5’-TTAGGG-3’). Al interaccionar, inhibe de manera eficaz la actuación de la telomerasa, por lo que se detiene la elongación de los telómeros de las células cancerígenas y como consecuencia suprime su proliferación. Esta actividad anticancerígena provoca que algunos de los factores claves encontrados en el complejo de Shelterina del telómero, como TRF2 y POT1, se liberen de dicho telómero, evitando así que lleven a cabo su función de retrasar la senescencia [6]. 

Además, la telomestatina es un ligando que tiene una mayor afinidad por los G4 intramoleculares, tanto si han sido formados a partir de un ADN telomérico dúplex, como de uno monocatenario, teniendo la función anteriormente mencionada. Esto supone una ventaja frente a otros compuestos como TMPyP4, el cual posee afinidad por los G4 intermoleculares y teniendo un efecto totalmente diferente el cual no se ha observado en la telomestatina: formación de puentes de anafase en erizos de mar [6]. 

A pesar de sus ventajas estabilizado los G4 cuadruplexos, arrastra algunas características que resultan contraproducentes así como sus solubilidad o inestabilidad, por lo que se empezaron a utilizar algunos compuestos análogos sintéticos [5].

Búsqueda de otros fármacos

En definitiva, la existencia de análogos sintéticos de G4s es lo que ha permitido contemplar una nueva forma de terapia para el cáncer [5][11], dado que reprime el correcto funcionamiento de las células cancerosas, llegando a conseguir la destrucción de la misma; así como análogos de la telomestatina [11], aunque estas terapias siguen en constante estudio y desarrollo. 

El silvestrol es un compuesto obtenido de la corteza de los árboles de la familia flavaglina cuya estructura permite inhibir el factor de transcripción: eIF4A, tratándose de una análogo sintético. El factor posee una actividad helicasa clave para el proceso fisiológico de la transcripción al permitir deshacer las estructuras secundarias que pueden aparecer en la cadena de ADN y que impedirían la continuación del proceso. Al mismo tiempo tiene un papel clave en la carcinogénesis al facilitar la leucemia linfoblástica aguda de las células T al promover la transcripción de oncogenes como MYC, CDK6 o MDM2 al desenrollar los G4 de la región 5’ UTR de sus mRNAs. Este compuesto lo que hará, será inhibir al eIF4A [5], interfiriendo indirectamente en el mantenimiento de la estructura de los ADN G cuadruplexos.

Otro análogo que también afecta al gen MYC es: TMPyP4, anteriormente mencionado. Este se basa en la represión de proto-oncogenes de dicho gen por medio de la estabilización de los G4 cuadruplexos [5].

Los análogos “pirodistatina” y CX-3542 provocan daño en células cancerosas también. El primero, induce la formación de un nuevo loop en la estructura del telómero: “R-loop”, siendo un híbrido de DNA y RNA transcrito causando un daño en el ADN canceroso. El segundo causa daño y muerte celular con mayor eficacia en 2 tipos celulares cancerosos concretamente: células ATRX deficientes y células BRCA1/2 deficientes [5].

En relación a la función de estas estructuras como fármacos, existen secuencias cortas en los ácidos nucleicos derivadas del motivo hexanucleotido TGGGAG, denominadas “secuencias de Hotoda” que son potentes inhibidores anti-VIH. Estas secuencias cortas también se encuentran activas en otros virus como en los que aparecen secuencias de 6 nucleótidos con la siguiente estructura GGGGGT, la cual, da lugar a G-cuadruplexos. Este se une al dominio C-terminal de la proteasa del virus de la hepatitis A y es un fuerte inhibidor de la proteasa 3C de este virus [10]. Al inhibirla, impide que el virus descomponga sus proteínas para poder multiplicarse. Por lo tanto, deja de propagarse.

Un argumento notable es que estas secuencias cortas son demasiado cortas para ser específicas. Además, pueden actuar sobre otros componentes celulares del huésped, que se unen a estructuras secundarias de ADN no canónicas [10].

Otro fármaco que ha resultado ser un potente inhibidor de la telomerasa es RHPS4, tratándose de un mutante de la subunidad de la telomerasa denominada hTERT. La expresión de dicha subunidad mutante ha dado evidencias de inhibir el proceso de la telomerasa al unirse y competir por el sitio de unión. Tras estudiar su efecto en células tumorales, se concluyó que la línea celular MCF-7 de las células pertenecientes al cáncer de mama sufren una detención del crecimiento similar a la senescencia [7].

Figura 6
Estructura de RHPS4
Tomada de: Cookson, J. C., Dai, F., Smith, V., Heald, R. A., Laughton, C. A., Stevens, M. F., & Burger, A. M. (2005). Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Molecular pharmacology, 68(6), 1551–1558. https://doi.org/10.1124/mol.105.013300 

Referencias consultadas

  1. Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: a promising target for cancer therapy. Molecular cancer, 20(1), 40. https://doi.org/10.1186/s12943-021-01328-4
  2. Yuan, W. F., Wan, L. Y., Peng, H., Zhong, Y. M., Cai, W. L., Zhang, Y. Q., Ai, W. B., & Wu, J. F. (2020). The influencing factors and functions of DNA G-quadruplexes. Cell biochemistry and function, 38(5), 524–532. https://doi.org/10.1002/cbf.3505
  3. Saranathan, N., & Vivekanandan, P. (2019). G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends in microbiology, 27(2), 148–163. https://doi.org/10.1016/j.tim.2018.08.011
  4. Kolesnikova, S., & Curtis, E. A. (2019). Structure and Function of Multimeric G-Quadruplexes. Molecules (Basel, Switzerland), 24(17), 3074. https://doi.org/10.3390/molecules24173074
  5. Nakanishi, C., & Seimiya, H. (2020). G-quadruplex in cancer biology and drug discovery. Biochemical and biophysical research communications, 531(1), 45–50. https://doi.org/10.1016/j.bbrc.2020.03.178
  6. Kim, M. Y., Gleason-Guzman, M., Izbicka, E., Nishioka, D., & Hurley, L. H. (2003). The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer research, 63(12), 3247–3256. 
  7. Cookson, J. C., Dai, F., Smith, V., Heald, R. A., Laughton, C. A., Stevens, M. F., & Burger, A. M. (2005). Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Molecular pharmacology, 68(6), 1551–1558. https://doi.org/10.1124/mol.105.013300 
  8. Pérez-Martínez, L., Wagner, T., & Luke, B. (2022). Telomere Interacting Proteins and TERRA Regulation. Frontiers in genetics, 13, 872636. https://doi.org/10.3389/fgene.2022.872636 
  9. Kelland L. R. (2005). Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. European journal of cancer (Oxford, England : 1990), 41(7), 971–979. https://doi.org/10.1016/j.ejca.2004.11.024 
  10. Abiri, A., Lavigne, M., Rezaei, M., Nikzad, S., Zare, P., Mergny, J. L., & Rahimi, H. R. (2021). Unlocking G-Quadruplexes as Antiviral Targets. Pharmacological reviews, 73(3), 897–923. https://doi.org/10.1124/pharmrev.120.000230
  11. Teng, F. Y., Jiang, Z. Z., Guo, M., Tan, X. Z., Chen, F., Xi, X. G., & Xu, Y. (2021). G-quadruplex DNA: a novel target for drug design. Cellular and molecular life sciences : CMLS, 78(19-20), 6557–6583. https://doi.org/10.1007/s00018-021-03921-8