¿Somos todos iguales frente al COVID? Los anticuerpos rebeldes que te mandan a la UCI

Por Irene Torres Pulido y MªIsabel López Rodrigo – Universidad de Alcalá de Henares

Todos conocemos ya a los protagonistas de esta historia: los anticuerpos, una de las principales líneas de defensa de nuestro organismo frente a los invasores del exterior. Pero ¿es esto siempre así?

Recientemente se ha probado que estos, uno de nuestros mayores aliados, podrían actuar en nuestra contra en el caso del COVID y ser responsables de muchas de las complicaciones que hacen que la enfermedad se desarrolle de forma más grave.

Tras los dos últimos años, todo el mundo conoce ya el COVID y hemos sido bombardeados con datos sobre qué perfiles son más vulnerables frente al virus:  Personas de avanzada edad, determinados grupos sanguíneos, hombres… La lista continúa. Pero ¿a qué se deben estas diferencias? 

Pues, al parecer, es posible que muchas de estas diferencias que llevan al desarrollo de un COVID de mayor gravedad se deban a la presencia de unos autoanticuerpos presentes sólo en parte la población y que no se lo ponen fácil a nuestro sistema inmune para combatir la infección.

Mientras que los anticuerpos luchan contra infecciones: los autoanticuerpos, se dirigen por error a las células, tejidos y órganos del propio organismo. En el caso del COVID, los autoanticuerpos que nos interesan van a atacar al interferón tipo I (IFN-I).

1. Interferón

Para saber cómo funcionan estos autoanticuerpos y por qué agravan la enfermedad es fundamental conocer la función del interferón.

En el caso de la COVID, para contener el virus cuando este entra en nuestro organismo, nuestro cuerpo lanza un primer “ataque” que es inespecífico y sirve para retrasar su propagación mientras se activan otros mecanismos de defensa más específicos. En este ataque inicial es donde se libera el interferón (IFN), que es una sustancia producida por determinadas células como glóbulos blancos o células infectadas y que ayuda a combatir infecciones y enfermedades.

Figura 1: Imagen que ilustra las fases de la respuesta inmune

Pertenecen a la familia de las citoquinas, que son moléculas que se usan para la comunicación entre células y reciben su nombre porque interfieren con la replicación de virus, aunque esta no es su única función. También juegan un papel esencial a la hora de desencadenar distintos mecanismos de defensa para combatir todo tipo de patógenos, incluyendo bacterias, parásitos o tumores.

Generalmente, los interferones I y III poseen propiedades más enfocadas a combatir el virus mientras el interferón II se relaciona más con la activación de respuestas específicas.

Si te apetece profundizar…

Al entrar en nuestro cuerpo, las partículas virales son reconocidas por receptores de nuestro sistema inmune que se localizan en el citosol o las membranas de células como monocitos y fibroblastos. Estos reconocen las moléculas víricas como extrañas e inician la respuesta inmune, en la que una de las primeras sustancias de defensa en ser liberadas es el interferón tipo I, un tipo de citoquinas producidas por las células del sistema inmune innato como antivirales.

Este interferón se une a células específicas y, mediante la vía JAK-STAT, activa la expresión de ISGs, un conjunto de genes que al ser activados por IFN producen moléculas antivíricas y factores de transcripción entre cuyas funciones se encuentran:

  • Evitar la entrada del virus a células que aún no han sido infectadas.
  • Interferir con el ciclo vírico: a nivel de la replicación o liberación del virus
  • Aumentar la sensibilidad del resto de células al interferón aumentando la síntesis de sus receptores.
Figura 2: Se muestra cómo los autoanticuerpos bloquean las diversas funciones que lleva a cabo el IFN.

¿Pero cómo se relaciona el interferón con el COVID y los autoanticuerpos?:

En el caso de pacientes con cuadros de COVID más graves se ha visto que suele haber una deficiencia en los niveles de interferón. Esto tiene sentido, puesto que sin un mecanismo de defensa en los primeros estadios de la infección es más fácil que se agrave la situación, ya que nuestro sistema inmune no está rindiendo al 100%. Pero esto nos lleva a la siguiente cuestión, que sería:¿Qué causa la deficiencia de IFN?

Los científicos han encontrado tres principales motivos que llevan a la disminución de los niveles de esta molécula:

  1. La presencia de autoanticuerpos que neutralizan el interferón (especialmente en contra de IFN-a2 e IFN-w, que son dos tipos de IFN tipo I).
  2. Defectos genéticos en la producción del interferón.
  3. La inhibición de la producción de interferón causada por el propio SARS-Cov-2.
  4. En este artículo profundizaremos en la primera de estas razones.

2. Autoanticuerpos:

Una de las primeras dudas que nos pueden asaltar sobre los autoanticuerpos es: ¿Qué hacen ahí? ¿Por qué fabrica nuestro cuerpo armas contra sí mismo y sabotea sus propias defensas?

En condiciones normales, si nuestro organismo detecta una partícula extraña a él desencadena una respuesta inmunológica para combatirlo. Esto es lo que ocurre frente a virus, bacterias o durante un proceso alérgico. Pero el problema viene cuando, por error, nuestro cuerpo detecta como ajenas células o moléculas propias y, de igual forma que si se tratase de una infección, comienza a sintetizar anticuerpos que atacan al propio organismo. A estos los denominamos autoanticuerpos.

Existen “autoanticuerpos naturales” en todos nosotros y, aunque pueda parecer contradictorio, esto puede ser una ventaja, ya que tienen baja afinidad y no serán muy reactivos frente a nuestros tejidos, pero colaboran en la eliminación de proteínas y lípidos oxidados o células muertas.

El problema es que estos autoanticuerpos pueden iniciar respuestas autoinmunes frente a moléculas propias como el interferón y servir de “plantilla” para la fabricación de autoanticuerpos que sí tengan mucha afinidad y puedan desencadenar patologías.

Frente al interferón I:

Tras comprobar que existía una deficiencia en los niveles de IFN I en pacientes que sufrían cuadros de COVID más grave se comenzó a estudiar si existía un defecto genético en estas personas que fuese el responsable de dicha deficiencia. Fue estudiando esto que se dieron cuenta de que no solo existía este defecto genético en algunos pacientes, sino que en el 10% de los 987 sujetos con los que hicieron el estudio existían anticuerpos neutralizantes frente IFN-I que atacaban más concretamente a IFN-α IFN-ω

Frente a otras moléculas del sistema inmune:

Recientemente, la revista Nature publicó los resultados de un estudio que demostraba que no sólo existen autoanticuerpos frente al interferón I, sino que también podríamos encontrar en menor proporción autoanticuerpos que atacasen a moléculas como quimioquinas, el interferón tipo III u otras citoquinas. En lo que se traduce esto es en la inhibición de una variedad de funciones inmunológicas que van a debilitar nuestro sistema inmune y ponérselo más fácil al virus para atacar a nuestro organismo.

3. Desigualdades en cifras

La actual pandemia de COVID-19 ha alcanzado ya a 293 millones de personas, habiendo perdido la vida 5,5 millones de ellas. Estas escandalosas cifras aumentan día tras día, por lo que resulta de vital importancia (además de centrarse en la búsqueda de vacunas, tratamientos y medidas de prevención efectivas,¡) invertir en la investigación de cuál es el mecanismo patogénico que sigue el virus y de nuevos factores de riesgo, aún no descubiertos, que permitan ubicar a aquellas personas con riesgo de desarrollar una patología grave.

En esta entrada queremos obviar lo que ya conocemos todos, como las posibles complicaciones asociadas a la obesidad o el tabaquismo (factores de riesgo comunes a prácticamente todas las enfermedades) e introducir los nuevos términos que hemos explicado antes como “interferón de tipo I” y “autoanticuerpos” para explicar por qué el COVID ataca más a una parte de la población. Son numerosos los estudios recientemente desarrollados o que actualmente se están llevando a cabo que tienen como base estos dos conceptos.

Uno de los quizás más llamativos, que incita a seguir investigando, es el siguiente, publicado en la revista Science, en el que se buscó la presencia de autoanticuerpos frente al interferón de tipo I en pacientes graves, asintomáticos y controles sanos. Los datos obtenidos fueron:

Figura 3: tabal de datos del estudio mencionado.

Como se puede observar las cifras son sumamente significativas, y permiten al menos, solidificar un poco la relación entre la gravedad de la patología y la presencia de autoanticuerpos.

Quizás, que los autoanticuerpos se encuentren en un 10,2% de los pacientes graves, no parece un número demasiado llamativo. Pero al extrapolar estos datos a los mundiales y considerando “casos graves” a aquellos que fallecieron (cifra que es mucho superior, ya que muchos de los casos graves sobrevivieron) encontraríamos más de medio millón de personas portadores de los mismos.

Si seguimos analizando el estudio expuesto, cabe destacar además que, de los 101 sujetos, el 94% de ellos eran varones y el 49,5% de ellos eran mayores de 65 años; estadísticas que se cumplen en estudios similares.                                                                                     Durante la pandemia han sido numerosos los titulares que afirmaban que los ancianos y los hombres son los “peores parados” en cuanto a los síntomas de esta patología. Son numerosas las hipótesis propuestas que justifican este hecho, pero… ¿podrían tener algo que ver los autoanticuerpos o anomalías relacionadas con el interferón de tipo I?

¿Por qué el COVID es especialmente letal en los hombres?

Coronavirus: El impactante gráfico que demuestra que la Covid mata mucho  más a hombres que a mujeres
Figura 4: diferencias entre hombres y mujeres en cuanto a la mortalidad frente al COVID-19.

Como se puede observar en la figura 4, la tasa de mortalidad es superior en hombres que en mujeres en todos los rangos de edad. En esta entrada vamos a explicar una teoría que explicaría a qué se debe esto, aunque es importante mencionar que existen otras hipótesis.

Como hemos visto, ante el ataque del virus, nuestro cuerpo libera interferón, por lo que una deficiencia en esta molécula podría generar una enfermedad de peor pronóstico.

Teniendo en cuenta los tres factores que contribuyen al decrimento del interferón tipo I que hemos mencionado antes (punto 1 del artículo), el hecho de que los hombres padezcan esta enfermedad de forma más grave debe estar relacionado con, al menos, una de ellas.

En este caso, la inhibición que produce el COVID sobre la producción de interferón no va a depender del sexo; por lo que eso nos deja los autoanticuerpos y los factores genéticos como únicas alternativas para explicar este suceso.

Se ha demostrado que, en comparación con las mujeres, son muchos más los hombres que presentan autoanticuerpos que actúan inhibiendo al interferón de tipo I. Pero además, también entra en juego un factor genético, que no va a contribuir a que los hombres estén en igualdad de condiciones en la lucha frente a la COVID, y este es el gen TLR7.

Este gen se halla en el cromosoma X, del que las mujeres presentan 2 copias, pero los hombres sólo una, por lo que posibles alteraciones en la secuencia de DNA de dicho gen afectarán más a los hombres.

El gen TLR7 codifica para un receptor que recibe el mismo nombre (TLR7), y que se encuentra en las células dendríticas plasmacitoides. Estas células intervienen en la respuesta antiviral liberando interferón tipo I; y es precisamente gracias al receptor TLR7 que pueden detectar el ARN vírico e iniciar la respuesta inmune.

Figura 5: Mecanismo de acción del receptor TLR7 en las pDC para la producción de interferón de tipo I.

Si te apetece profundizar…

Una vez detectado el ARN viral por medio del receptor tipo toll 7 TLR7, las células dendríticas plasmacitoides (pDC) forman grupos pDC-pDC autoadhesivos que producen los interferones de tipo I. Es por ello que, mutaciones en la vía de señalización de esta citocina también están vinculadas a los casos más graves de COVID-19.

Este hecho también esta teniendo mucho impacto en el mundo de la investigación. Recientemente se ha realizado un estudio consistente en la búsqueda de variantes genéticas raras en una muestra de 1202 hombres, para estudiar la presencia de una deficiencia funcional en TLR7. Los resultados muestran que dichas variantes se encontraron en el 1,8% de pacientes menores de 60 años con patología grave, pero no fueron identificados en ninguna de las 331 personas asintomáticas o que presentaban síntomas muy leves.

¿Por qué el COVID es especialmente letal en ancianos?

En el caso de los ancianos, en un estudio publicado por Science Inmunology, se determinó que el 20% de pacientes de más de 80 años con patología grave presentaban autoanticuerpos bloqueantes del interferón I, lo que provoca por lo tanto, que el sistema inmune de estos enfermos (sumado al resto de factores de riesgo asociados con la edad) tenga menos capacidad de defensa frente a la infección.

Y ahora… ¿qué?

  • Como se ha descubierto, la integridad de la respuesta del interferón de tipo I para hacer frente al COVID-19 es de vital importancia, por lo que resultaría bastante prometedor el desarrollo de posibles tratamientos con interferón específico contra la enfermedad o bien terapias dirigidas a la eliminación de estos autoanticuerpos.
  • Podría ser además de gran utilidad la identificación de pacientes con mayor probabilidad de desarrollar patología grave mediante la realización de cribados pre-sintomáticos de muestras de sangre en busca de estos anticuerpos neutralizantes del interferón de tipo I.
  • En el posible tratamiento basado en la transfusión de plasma de pacientes convalecientes para lograr mejoras en casos de mayor gravedad, sería importante analizar que el sujeto no sea portador de autoanticuerpos ya que estos neutralizarían esa respuesta inmunitaria inicial frente al virus.
  • Estos hallazgos han tenido tanta repercusión que a pesar de que continúa en estudio, hace un año en Reino Unido se inició un ensayo a gran escala de un tratamiento consistente en la inhalación de interferón beta para su introducción directa en las vías respiratorias; el resultado esperado consistía en lograr una respuesta antiviral más fuerte, incluso en aquellos pacientes que se encontraban debilitados.
BIBLIOGRAFÍA
  • Autoantibodies against type I IFNs in patients with life-threatening COVID-19. (2020, 24 septiembre). Science. https://www.science.org/doi/10.1126/science.abd4585
  • Wang, E. Y. (2021, 19 mayo). Diverse functional autoantibodies in patients with COVID-19. Nature. https://www.nature.com/articles/s41586-021-03631-y?error=cookies_not_supported&code=b6092a1b-e2ed-4094-91c4-ae5871deb2c1
  • Zhou, W. (2021, 26 febrero). Auto-antibodies against type I IFNs are associated with severe COVID-19 pneumonia. Nature. https://www.nature.com/articles/s41392-021-00514-6?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Signal_Transduction_and_Targeted_Therapy_TrendMD_1&error=cookies_not_supported&code=e0a9c9f7-cdc3-4efe-86e7-e6b29f9795ab
  • Bastard, P., Gervais, A., & le Voyeur, T. (2021, 20 junio). Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 6. https://www.science.org/doi/full/10.1126/sciimmunol.abl4340
  • del Fresno, C. (2020, 2 octubre). Papel del interferón en la COVID-19 grave. Empíreo Diagnóstico Molecular – Diagnóstico de VIH y ETS. https://www.empireo.es/papel-del-interferon-en-la-covid-19-grave
  • Sinha Dutta, S., & Henderson, E. (2021, 9 marzo). What are Autoantibodies? News Medical Life Sciences. https://www.news-medical.net/life-sciences/What-are-Autoantibodies.aspx
  • Beck, D., & Aksentijevich, I. (2022). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Retrieved 6 January 2022, from https://www.science.org/doi/10.1126/science.abd4585
  • Simona Pascolini, Antonio Vannini, Gaia Deleonardi, Michele Ciordinik, (2020). COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful?, from http://pubmed.ncbi.nlm.nih.gov/32989903.
  • Describen dos nuevas variantes del gen TLR7 que se asocian a formas graves de la COVID-19 en hombres jóvenes y sanos – idibell. (2022). Retrieved 6 January 2022, from https://idibell.cat/es/2021/07/describen-dos-nuevas-variantes-del-gen-tlr7-que-se-asocian-a-formas-graves-de-la-covid-19-en-hombres-jovenes-y-sanos/

BIBLIOGRAFÍA DE LAS IMÁGENES:

  • Figura 1: Así reacciona el sistema inmunitario frente al nuevo coronavirus. (2020, 8 mayo). Instituto Salud Carlos III. https://www.isciii.es/InformacionCiudadanos/DivulgacionCulturaCientifica/DivulgacionISCIII/Paginas/Divulgacion/InformeCoronavirusInmunidad.aspx
  • Figuras 2, 3 y 5: Creadas por los autores
  • Figura 4: Ana Blanco, Nature, Diferencia entre mortalidad por Covid de hombres y mujeres. https://www.elespanol.com/ciencia/salud/20200904/impactante-grafico-demuestra-covid-mata-hombres-mujeres/517949556_0.html



¿Por qué aumenta la infectividad del coronavirus?: Un sencillo experimento virtual con la ‘variante británica’ del SARS-CoV-2

por C. Menor-Salván

En los medios y redes sociales ha causado una gran alarma la aparición, reportada en diciembre de 2020 en Gran Bretaña, de una nueva variante del virus SARS-CoV-2. Esta variante, denominada B.1.1.7, contiene varias mutaciones puntuales respecto de la variante original que se extendió en febrero-marzo de 2020. Según los datos clínicos disponibles, la variante B.1.1.7 tiene mayor infectividad y velocidades de transmisión. Desde diciembre, según el COVID-19 UK Genomics Consortium, más del 50% de los nuevos contagios son de ésta variante, que presenta una transmisibilidad incrementada entre un 50 y un 70% respecto de la variante original que llamaremos WT (por ‘wild type’). Como es lógico, la aparición de variantes con mayor transmisibilidad crean alarma, pero son perfectamente esperables, dado que estamos forzando el proceso de evolución viral: mediante confinamientos y medidas anticontagio, creamos una selección artificial de las variantes más infectivas, que prevalecen sobre las variantes originales.

La infectividad viral es una consecuencia de varios aspectos moleculares del virus; uno de ellos es la afinidad por el receptor celular, que una proteína del virus reconoce, y al que se une, iniciando el proceso de infección. La proteína viral que reconoce el receptor en la célula que va a infectar es la proteína de la espícula. Como si de un puzzle molecular se tratara, la espícula viral ‘encaja’ en el receptor. Os remito a la Noticia Nº 59 para una introducción general al SARS-CoV-2

La proteína de la espícula, que contiene un dominio o región, que interacciona con el receptor de la célula.

Como es lógico, si modificamos la proteína de la espícula de modo que mejore la estabilidad de su interacción con el receptor, aumentará la infectividad. ¿como?. Para entenderlo, hay que tener en cuenta que un virus es un agregado supramolecular. Digamos que es una gran molécula heterogénea. No es un ser vivo. Si el virus tiene mayor afinidad por su receptor, quiere decir que la infección se producirá a una concentración menor. Dicho de otra manera, si aumentamos la afinidad del virus modificado por el receptor, se producirá una infección con una cantidad de virus menor que los necesarios con el virus sin modificar. Y, posiblemente, este proceso está detras del efecto de la variante UK B.1.1.7: una de sus mutaciones se encuentra precisamente en la región de la espícula que interacciona con el receptor de la célula a infectar.

En ésta entrada voy a mostraros como nosotros mismos podemos ver éste efecto: voy a tomar los datos de la estructura PDB 60MJ y, a partir de ellos, voy a:

  • Calcular las interacciones por puentes de hidrógeno entre la espícula y el receptor. Estas interacciones determinan la estabilidad el complejo espícula-receptor, y, como es lógico, cuando más puentes y más fuertes, mayor estabilidad = mayor afinidad =mayor infectividad. También observaremos otras interacciones evidentes, como el stacking pi: un tipo de enlace que se produce entre aminoácidos aromáticos.
  • Voy a introducir la mutación N501Y de la ‘variante británica’, que implica el cambio de la asparagina 501 de la espícula por una tirosina, justamente en la región de interacción entre la espícula y el receptor.
  • Después, usando el software, el ordenador calculará la estructura más estable resultante de ése cambio y veremos si la mutación introduce la aparición de nuevas interacciones. Si la mutación implica la aparición de nuevos enlaces, esto explica fácilmente el aumento de infectividad de la ‘variante británica’.

Este procedimiento lo voy a llevar a cabo usando los softwares UCSF Chimera, Pymol y Chem3D.

La mutación N501Y de la ‘variante británica’ del SARS-CoV-2 introduce nuevas interacciones y podría aumentar la afinidad por el receptor y la infectividad

Como hemos comentado, la unión entre la espícula viral y el receptor desencadena el proceso infectivo. Esta unión se lleva cabo gracias a que se establecen una serie de interacciones no covalentes entre las dos proteínas: puentes de hidrógeno e interacciones tipo apilamiento entre anillos aromáticos. Cuanto más fuerte sea la unión, mayor estabilidad tendrá el complejo y, por tanto, mayor afinidad tendrá el virus por el receptor. Al aumentar la afinidad, aumenta la infectividad del virus, dado que se requiere una inoculación de menor cantidad de virus para producir una infección efectiva. Si, por ejemplo, el virus WT necesita (número arbitrario) introducir 1000 unidades de virus en el hospedador para producir una infección, al aumentar la afinidad por el receptor ese número se puede reducir a 500-300.

Interacción entre la glicoproteína S o espícula viral y la proteína receptora ACE2 de la célula, que a su vez forma un complejo con el transportador transmembrana de aminoácidos B0AT1. En las siguientes figuras, nos centraremos en la zona recuadrada, donde se produce la interacción espícula-receptor. Imagen tomada de Rynkiewicz et al. (2021)

Centrándonos en las estructuras del dominio RBD de la espícula y de la proteína ACE2 (recuadrados en la figura anterior), vamos a ver el resultado que obtenemos usando los datos de la variante original del virus:

Vemos la estructura molecular del dominio RBD, en azul. Este dominio es la parte de la espícula que se une al receptor celular, la proteína ACE2. Las líneas azules representan los puentes de hidrógeno entre aminoácidos. Aquí tienen especial protagonismo el Gln 493 y la lisina 417, que forman puentes con el receptor. La fenilalanina 486 da lugar a un apilamiento pi con una tirosina del receptor. Esta interacción no existía en el SARS de 2003, y es una de las que explica la mayor afinidad (e infectividad) del SARS-CoV-2. En amarillo veis la Asn (asparagina) 501, que ya en su momento se señalaba como un aminoácido potencialmente interesante en la estructura. Vamos a ver qué ocurre cuando introducimos la mutación:

Fe de errata: Donde dice «E50Y» debe decir «N501Y»

La introducción de la mutación, con la nueva tirosina en la posición 501, tiene consecuencias que son sutiles pero de gran importancia. Primero, aparecen nuevas interacciones entre el nuevo aminoácido y el receptor: nuevos puentes de hidrógeno y un enlace por stacking pi entre la tirosina 501 y una tirosina del receptor. Por otro lado, interacciones que ya existían previamente disminuyen su distancia. Los puentes de hidrógeno entre las lisina 417 y la glutamina 493 se hacen más cortos (y por tanto mas fuertes, ya que es una interacción electrostática). Como resultado la proteína mutante se une con mayor estabilidad al receptor, ya que aumentan el número de puntos de atracción electrostática y disminuye la distancia de las que ya existían. Esto da lugar a una unión más estable, y, por tanto, a un aumento de la afinidad. Esto se traduce en la práctica en un aumento de la infectividad de la variante.

Las representaciones de proteínas son algo abstractas. Para que el lector pueda ver más intuitivamente cómo se produce la unión, vamos a ver las superficies de las moléculas de proteína. Estas interaccionan ‘encajando’ y uniéndose por las interacciones electrostáticas, de modo similar a como si uniéramos unas piezas con imanes.

Interacción entre el dominio de unión de la proteína de la espícula y el receptor. El receptor es una enzima del tipo zinc- metaloproteasa, y puede observarse el gran surco del centro activo, donde encaja la angiotensina.

En cierto modo, el virus y su receptor interaccionan de modo similar a las piezas de un conector magnético, pero con una interacción electrostática en lugar de magnética.

La fuerza y geometría de las interacciones electrostáticas determina la estabilidad de la unión entre el virus y su receptor, y, por tanto, su afinidad e infectividad. La acción de los anticuerpos se basa en un principio similar. Una pregunta habitual es si ésta nueva variante supondrá una pérdida de eficacia de las vacunas o mejorará la evasión inmune del virus. Todavía queda mucho trabajo para los científicos, pero los primeros datos indican que ésta variante no alterará la eficacia de la vacuna ni la respuesta inmune, al ser mutaciones puntuales que no afectan al reconocimiento de los anticuerpos.

Por otro lado, las modificaciones en el dominio de reconocimiento de receptor en la espícula viral, tampoco implican un aumento de la agresividad del virus, por lo que el aumento de infectividad no va asociado a un aumento de gravedad de las infecciones. Como digo, aún queda mucho que investigar y que aprender y todo puede ir cambiando, pues la pandemia evoluciona más rápido que la capacidad de los científicos para obtener resultados y avances.

Estos sencillos resultados que he mostrado, obtenidos mediante un no menos sencillo análisis computacional de datos de estructuras de proteínas, no son mas que una aproximación muy sencilla. Un estudio mas complejo y riguroso requeriría muchos mas medios y tiempo de los que dispongo, pero espero que sirva para entender la mecánica molecular que hay tras la infección del coronavirus.

Referencias

Kupferschmidt, K. Fast-spreading UK virus variant raises alarms. Science (New York, NY)371(6524), 9-10.

Lauring, A. S., & Hodcroft, E. B. Genetic Variants of SARS-CoV-2—What Do They Mean?. JAMA.

Rynkiewicz, P., Babbitt, G. A., Cui, F., Hudson, A. O., & Lynch, M. L. A comparative survey of Betacoronavirus binding dynamics relevant to the functional evolution of the highly transmissible SARS-CoV-2 variant N501Y. bioRxiv, 2021: https://doi.org/10.1101/2020.09.11.293258

Tang, J. W., Tambyah, P. A., & Hui, D. S. (2020). Emergence of a new SARS-CoV-2 variant in the UK. Journal of Infection.

UCSF Chimera–a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12

Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., Geidelberg, L., … & Ferguson, N. M. (2021). Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. medRxiv, 2020-12.

Zhou, Q., Yan, R., Zhang, Y., Li, Y., & Xia, L. (2020). Structure of dimeric full-length human ACE2 in complex with B0AT1. BioRxiv: https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1.abstract