ADN G-cuadruplexos, diana farmacológica frente al cáncer

Realizado por Ana Jiménez y Cristina Iruela – 3º de Biología Sanitaria, UAH

Los G-cuadruplexos son unas estructuras químicas que llevan años en el punto de mira por su característica estructra y localización. Cada vez se apuesta más por ellos como terapia frente al cáncer dada su interacción con estrucutras y moléculas íntimamente relacionadas con la enfermedad. A continuación se expondrá una breve revisión sobre el tema.

Estructura y función de los ADN-G cuadruplexos

Las secuencias de ADN ricas en guanina pueden plegarse en estructuras secundarias no canónicas de cuatro cadenas denominadas G-cuadruplexos (G4). Estas estructuras secundarias se forman tanto en el ADN como en el ARN. Consiste en 4 guaninas unidas por puentes de hidrógeno de tipo Hoogsteen, en los que cada guanina puede actuar como donante y aceptor de dos puentes de hidrógeno formando una estructura plana denominada tétrada G [1]. 

Dos o más tétradas G se pueden apilar una encima de otra para formar un G-cuadruplexo, siendo esta su unidad estructural. Esta se forman conectando 4 guaninas a través de 8 puentes de hidrógeno. En la tétrada G, se forman dos de estos puentes que emparejan guaninas adyacentes, en los que están involucrados los nitrógenos número 1,7, 2 y el oxígeno 6 de cada nucleótido de guanina [2].

Figura 1
Estructura química de una tétrada G
Tomada de Kolesnikova, S., & Curtis, E. A. (2019). Structure and Function of Multimeric G-Quadruplexes. Molecules (Basel, Switzerland), 24(17), 3074. https://doi.org/10.3390/molecules24173074

Además, es necesaria la presencia de un catión metálico (Na+, K+) para estabilizar la estructura [3].

En el ARN, los G4 formados en la región 5’UTR del ARNm inhiben la traducción dependiente de cap y mejoran la traducción independiente de caperuza mediada por IRES. También influyen en otros mecanismos moleculares que tienen lugar en el ARN, como el empalme, cambios en el marco de lectura, localización del ARNm o la maduración de los miARN [3].

En base a experimentos in vitro, se predijo que los G-cuadruplexos se forman en regiones que albergan un motivo G4 específico. Sin embargo, estudios actuales muestran que también pueden formarse dentro de regiones con bucles formados por 3 o más guaninas por repetición, así como en regiones que no siguen este motivo G4 estricto [1].

No se distribuyen al azar en todo el genoma, sino que abundan en ciertas regiones, como promotores, telómeros, sitios de unión de factores de transcripción u orígenes de replicación. La estabilidad de esta estructura depende, entre otros factores, del número de guaninas por repetición y de la longitud de los bucles [1].

Figura 2
Estructura de los G-cuadruplexos
Nota: B) Una representación 2D de un pliegue G4 típico que muestra los tres cuartetos planos. Las esferas en los vértices de los cuartetos representan una guanina de cada uno de los cuatro G-tripletes. La esfera negra en el centro denota el catión metálico central (Na + , K + ) necesario para estabilizar la estructura G4. (C) Una vista superior de un cuarteto G plano que muestra los enlaces Hoogsteen (líneas discontinuas), los átomos de los mismos y un catión en la cavidad central. Las figuras no están dibujadas a escala.
Fragmento tomado de: Saranathan, N., & Vivekanandan, P. (2019). G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends in microbiology, 27(2), 148–163. https://doi.org/10.1016/j.tim.2018.08.011

La relevancia fisiológica de estas estructuras se debe a la existencia de proteínas que pueden unirse a ellas o desplegarlas. Existen 3 clases de proteínas que interactúan con los G-cuadruplexos descritas en la literatura: proteínas de unión a G-cuadruplexos, estabilizadoras de G-cuadruplexos y desarrolladoras de G-cuadruplexos (como helicasas). Se ha descrito qué mutaciones y/o delecciones en estas proteínas conducen a cambios en la formación de estas estructuras. Lo que, a su vez, puede dar lugar a cambios en las vías biológicas (cambios transcripcionales) y aumentar la inestabilidad del genoma [1].

La formación transitoria de G4 en condiciones termodinámicamente favorables tiene funciones reguladoras importantes dictadas por su ubicación en el genoma [3]. Entre ellas se encuentran la regulación de la transcripción, traducción, replicación del ADN y localización del ARN [4]. Destaca la función de los G-cuadruplexos en relación a la inhibición de la actividad de la telomerasa [3].

Relación con los telómeros + telomerasa + cáncer

Como ya se ha mencionado, los telómeros son un ejemplo de la presencia de G4 cuadruplexos en el genoma de los vertebrados, basándose en la secuencia consenso: (5’-TTAGGG-3’) [5] que evidencia la presencia repetitiva de las guaninas (dicha secuencia es específica para los mamíferos y cambia según la especie de los mismos).

Para comprender la importancia de los telómeros, es clave entender la estructura de los mismos, cuya formación es una respuesta evolutiva al problema encontrado en los extremos 3’ cuando la maquinaria de replicación de nuestras células no puede rellenar el hueco al no tener un extremo 5’ anterior que le sirva de molde para la síntesis de la nueva cadena. Esto tiene como resultado la formación de un T-loop y un D-loop originados por la invasión de un extremo 3’ que sobresalía respecto al extremo 5’ complementario [6]. Además, se encontrará el complejo de Shelterina, el cual poseerá diferentes proteínas que regularán la actividad de la telomerasa, enzima encargada de la elongación de los telómeros por medio de la adición de unidades (TTAGGG).

Esta respuesta evita la pérdida de información en cada ronda de replicación y evitan que la célula reconozca esta región sobrante como un daño en el ADN y lo elimine. De todas maneras, estos telómeros se irán acortando igualmente con el tiempo: acortamiento telomérico de Hayflick, resultando en un punto crítico de longitud activando la llamada senescencia replicativa, siendo este proceso la base del envejecimiento celular que resulta en poner fin a su división [7]. La regulación de dicha senescencia es clave para el organismo para evitar su envejecimiento y como supresor de tumores [8].

Figura 3
Representación de un cromosoma y terminación telomérica
Nota: A) Esquema de un cromosoma indicando la ubicación de un telómero. B) Estructura del telómero: T-loop secuestrando el extremo terminal del cromosoma, y D-loop donde se observa la triple hebra de ADN. C) Complejo Shelterina de proteínas asociadas a los telómeros.
Tomado de Mengual Gomez, Diego & Armando, Romina & Farina, Hernán & Gomez, Daniel. (2014). Telomerasa y telómero: su estructura y dinámica en salud y enfermedad. Medicina. 74. 69-76.

Los G4 tienen un papel de represión de determinados genes en células sanas impidiendo la entrada de la maquinaria necesaria para la replicación y transcripción. En células sanas, estos evitan la expresión de oncogenes como: MYC, sufriendo así un proceso de regulación negativa [5].

Figura 4
Resumen esquemático de los efectos de los ligandos de G4 en las células cancerosas
Tomado de: Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: a promising target for cancer therapy. Molecular cancer, 20(1), 40. https://doi.org/10.1186/s12943-021-01328-4

Lo que ocurre en enfermedades como el cáncer es que el acortamiento de los telómeros se evita hasta tal punto que las células se inmortalizan y escapan al proceso de muerte celular. La base patológica de esto es la activación de la telomerasa la cual está además sobre expresada en los tejidos cancerosos [9], cuya activación será siempre el reflejo de una respuesta anómala. Los G4 presentes en los telómeros de sus células no tendrán la misma eficacia que en las células sanas, puesto que la telomerasa se introduce y favorece la elongación de dicho telómero. Este suceso tendrá como consecuencia el desarrollo del fenotipo inmortal que adoptarán las células del tejido afectado y que se volverán cancerosas [5]. Es importante destacar que la alteración de la unión de los G4 con la telomerasa se ha observado tanto in vivo como in vitro [1]. 

Cabe mencionar las regiones TERRA, región telomérica de RNA no codificante [5]. Esta, es el transcrito resultante del telómero llevado a cabo por la enzima RNA polimerasa II la cual puede aparecer como ARN nucleoplásmico libre o en forma de un nuevo loop en la estructura de los telómeros: R-loop (correspondiente a un híbrido entre ADN y ARN) [8]. 

Cuando el telómero se acorta hasta dicho punto crítico anteriormente mencionado, este R-loop se asocia con el resto de TERRA promoviendo la reparación dirigida por homología (denominada HDR-mediated). Este proceso va a permitir la recombinación del telómero con su propia secuencia perpetuando así su vida celular y evitando la senescencia prematura. Además, este mismo mecanismo será utilizado por algunas células cancerosas para la elongación de los telómeros en caso de no poseer telomerasa funcionando como mecanismo de alargamiento alternativo, siendo la base de los tumores ALT [8].

Paradójicamente, algunos estudios han dado evidencia de la longitud reducida de los telómeros de las células cancerígenas respecto a las células de tejidos libres de cáncer, así como un aumento del número de los G4 en las mismas [5][9]. Para esto se siguen formulando diferentes hipótesis.

Otras utilidades bioquímicas

Además de la función anteriormente mencionada, se han estudiado cada vez más aplicaciones:

  • Son utilizados como sondas, solas o en complejo con hemina, una estructura de porfirina que contiene hierro para detectar la presencia de diferentes ligandos [10].

  • También como transportadores, gracias a su capacidad para secuestrar ligandos, actuando como agentes de administración de fármacos [10].

  • En los últimos años, se ha extendido su uso como fármacos, en concreto como aptámeros (ácidos nucleicos de cadena sencilla aislados de genotecas de oligonucleótidos por selección in vitro), interactuando con biomoléculas, como proteínas e interfiriendo con sus funciones [10].

  • O como dianas farmacológicas explotando su capacidad para interactuar con ligandos específicos, lo que puede alterar funciones importantes si el G-cuadruplexo se encuentra en regiones esenciales en el genoma del virus o de la célula huésped [10]. 
Figura 5
Aplicaciones de los G-cuadruplexos
Nota: Representación gráfica de las principales aplicaciones de los G-cuadruplexos.
Tomado de: Abiri, A., Lavigne, M., Rezaei, M., Nikzad, S., Zare, P., Mergny, J. L., & Rahimi, H. R. (2021). Unlocking G-Quadruplexes as Antiviral Targets. Pharmacological reviews, 73(3), 897–923. https://doi.org/10.1124/pharmrev.120.000230

Telomestatina

En múltiples estudios, se ha propuesto que las mejores dianas farmacológicas serían aquellas que solo se expresasen en las células cancerosas o aquellas que fuesen esenciales para mantener el fenotipo maligno de las mismas. La telomerasa, es una diana clave [6][7][9].

Se trata de un producto natural aislado de Streptomyces anulatus que es un ligando de los G4 teniendo una afinidad muy alta por la secuencia concreta de los telómeros: (5’-TTAGGG-3’). Al interaccionar, inhibe de manera eficaz la actuación de la telomerasa, por lo que se detiene la elongación de los telómeros de las células cancerígenas y como consecuencia suprime su proliferación. Esta actividad anticancerígena provoca que algunos de los factores claves encontrados en el complejo de Shelterina del telómero, como TRF2 y POT1, se liberen de dicho telómero, evitando así que lleven a cabo su función de retrasar la senescencia [6]. 

Además, la telomestatina es un ligando que tiene una mayor afinidad por los G4 intramoleculares, tanto si han sido formados a partir de un ADN telomérico dúplex, como de uno monocatenario, teniendo la función anteriormente mencionada. Esto supone una ventaja frente a otros compuestos como TMPyP4, el cual posee afinidad por los G4 intermoleculares y teniendo un efecto totalmente diferente el cual no se ha observado en la telomestatina: formación de puentes de anafase en erizos de mar [6]. 

A pesar de sus ventajas estabilizado los G4 cuadruplexos, arrastra algunas características que resultan contraproducentes así como sus solubilidad o inestabilidad, por lo que se empezaron a utilizar algunos compuestos análogos sintéticos [5].

Búsqueda de otros fármacos

En definitiva, la existencia de análogos sintéticos de G4s es lo que ha permitido contemplar una nueva forma de terapia para el cáncer [5][11], dado que reprime el correcto funcionamiento de las células cancerosas, llegando a conseguir la destrucción de la misma; así como análogos de la telomestatina [11], aunque estas terapias siguen en constante estudio y desarrollo. 

El silvestrol es un compuesto obtenido de la corteza de los árboles de la familia flavaglina cuya estructura permite inhibir el factor de transcripción: eIF4A, tratándose de una análogo sintético. El factor posee una actividad helicasa clave para el proceso fisiológico de la transcripción al permitir deshacer las estructuras secundarias que pueden aparecer en la cadena de ADN y que impedirían la continuación del proceso. Al mismo tiempo tiene un papel clave en la carcinogénesis al facilitar la leucemia linfoblástica aguda de las células T al promover la transcripción de oncogenes como MYC, CDK6 o MDM2 al desenrollar los G4 de la región 5’ UTR de sus mRNAs. Este compuesto lo que hará, será inhibir al eIF4A [5], interfiriendo indirectamente en el mantenimiento de la estructura de los ADN G cuadruplexos.

Otro análogo que también afecta al gen MYC es: TMPyP4, anteriormente mencionado. Este se basa en la represión de proto-oncogenes de dicho gen por medio de la estabilización de los G4 cuadruplexos [5].

Los análogos “pirodistatina” y CX-3542 provocan daño en células cancerosas también. El primero, induce la formación de un nuevo loop en la estructura del telómero: “R-loop”, siendo un híbrido de DNA y RNA transcrito causando un daño en el ADN canceroso. El segundo causa daño y muerte celular con mayor eficacia en 2 tipos celulares cancerosos concretamente: células ATRX deficientes y células BRCA1/2 deficientes [5].

En relación a la función de estas estructuras como fármacos, existen secuencias cortas en los ácidos nucleicos derivadas del motivo hexanucleotido TGGGAG, denominadas “secuencias de Hotoda” que son potentes inhibidores anti-VIH. Estas secuencias cortas también se encuentran activas en otros virus como en los que aparecen secuencias de 6 nucleótidos con la siguiente estructura GGGGGT, la cual, da lugar a G-cuadruplexos. Este se une al dominio C-terminal de la proteasa del virus de la hepatitis A y es un fuerte inhibidor de la proteasa 3C de este virus [10]. Al inhibirla, impide que el virus descomponga sus proteínas para poder multiplicarse. Por lo tanto, deja de propagarse.

Un argumento notable es que estas secuencias cortas son demasiado cortas para ser específicas. Además, pueden actuar sobre otros componentes celulares del huésped, que se unen a estructuras secundarias de ADN no canónicas [10].

Otro fármaco que ha resultado ser un potente inhibidor de la telomerasa es RHPS4, tratándose de un mutante de la subunidad de la telomerasa denominada hTERT. La expresión de dicha subunidad mutante ha dado evidencias de inhibir el proceso de la telomerasa al unirse y competir por el sitio de unión. Tras estudiar su efecto en células tumorales, se concluyó que la línea celular MCF-7 de las células pertenecientes al cáncer de mama sufren una detención del crecimiento similar a la senescencia [7].

Figura 6
Estructura de RHPS4
Tomada de: Cookson, J. C., Dai, F., Smith, V., Heald, R. A., Laughton, C. A., Stevens, M. F., & Burger, A. M. (2005). Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Molecular pharmacology, 68(6), 1551–1558. https://doi.org/10.1124/mol.105.013300 

Referencias consultadas

  1. Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: a promising target for cancer therapy. Molecular cancer, 20(1), 40. https://doi.org/10.1186/s12943-021-01328-4
  2. Yuan, W. F., Wan, L. Y., Peng, H., Zhong, Y. M., Cai, W. L., Zhang, Y. Q., Ai, W. B., & Wu, J. F. (2020). The influencing factors and functions of DNA G-quadruplexes. Cell biochemistry and function, 38(5), 524–532. https://doi.org/10.1002/cbf.3505
  3. Saranathan, N., & Vivekanandan, P. (2019). G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends in microbiology, 27(2), 148–163. https://doi.org/10.1016/j.tim.2018.08.011
  4. Kolesnikova, S., & Curtis, E. A. (2019). Structure and Function of Multimeric G-Quadruplexes. Molecules (Basel, Switzerland), 24(17), 3074. https://doi.org/10.3390/molecules24173074
  5. Nakanishi, C., & Seimiya, H. (2020). G-quadruplex in cancer biology and drug discovery. Biochemical and biophysical research communications, 531(1), 45–50. https://doi.org/10.1016/j.bbrc.2020.03.178
  6. Kim, M. Y., Gleason-Guzman, M., Izbicka, E., Nishioka, D., & Hurley, L. H. (2003). The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer research, 63(12), 3247–3256. 
  7. Cookson, J. C., Dai, F., Smith, V., Heald, R. A., Laughton, C. A., Stevens, M. F., & Burger, A. M. (2005). Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Molecular pharmacology, 68(6), 1551–1558. https://doi.org/10.1124/mol.105.013300 
  8. Pérez-Martínez, L., Wagner, T., & Luke, B. (2022). Telomere Interacting Proteins and TERRA Regulation. Frontiers in genetics, 13, 872636. https://doi.org/10.3389/fgene.2022.872636 
  9. Kelland L. R. (2005). Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. European journal of cancer (Oxford, England : 1990), 41(7), 971–979. https://doi.org/10.1016/j.ejca.2004.11.024 
  10. Abiri, A., Lavigne, M., Rezaei, M., Nikzad, S., Zare, P., Mergny, J. L., & Rahimi, H. R. (2021). Unlocking G-Quadruplexes as Antiviral Targets. Pharmacological reviews, 73(3), 897–923. https://doi.org/10.1124/pharmrev.120.000230
  11. Teng, F. Y., Jiang, Z. Z., Guo, M., Tan, X. Z., Chen, F., Xi, X. G., & Xu, Y. (2021). G-quadruplex DNA: a novel target for drug design. Cellular and molecular life sciences : CMLS, 78(19-20), 6557–6583. https://doi.org/10.1007/s00018-021-03921-8



BRCA1 Y BRCA2: MUTACIONES Y CÁNCER

Noelia Ares Bóveda, Belén Asenjo Lajusticia e Irene Cañadilla González. Biología Sanitaria. Universidad de Alcalá.

Poco sabía Mary-Claire King en 1994 que su descubrimiento revolucionaría la biología molecular del cáncer: el gen BRCA1 que, junto con el gen BRCA2 descubierto un año después, abrió la puerta a la investigación de diferentes tipos de cáncer y su enfoque en clínica. 

Estos dos genes juegan un papel fundamental en el mantenimiento de la estabilidad del genoma. Ante su pérdida de funcionalidad, falta o mutación, pueden conducir a fenómenos de tumorigénesis, además de otras patologías como la anemia de Fanconi. 

Sin embargo, no toda mutación implica riesgo de aparición de tumores, y aquí subyace la complejidad de su estudio. 

¿Cómo son estos genes y cómo funcionan? ¿En qué tipos de cáncer están implicados? ¿Qué aproximaciones terapéuticas existen a día de hoy?

FUNCIÓN Y ESTRUCTURA

BRCA1/2 (Breast Cancer Genes) son genes supresores de tumores que juegan un papel fundamental en el mantenimiento de la estabilidad genómica. Cuando se producen roturas en la doble hebra de DNA (DSB), ocasionando así una interrupción en la lectura del mismo, entran en juego estos genes: las proteínas que codifican llevan a cabo el proceso de recombinación homóloga (HR), uno de los mecanismos de reparación fundamentales que tienen lugar en la fase S del ciclo celular.

La inactividad de estos genes desencadenaría una recombinación homóloga defectiva que en último término podría desembocar en una predisposición al tumor, especialmente en la mama. 

Figura 1: se ilustra el papel supresor de tumores de BRCA1/2 cuando se encuentra activo, mientras que ante su pérdida de funcionalidad se genera una predisposición a la formación de tumores. Created with BioRender.com.

A pesar de tener una función similar, BRCA1 y BRCA2 presentan diferencias en cuanto a su biología molecular, sus interacciones con proteínas y su relación con el cáncer.

BRCA1

El gen BRCA1 se sitúa en el brazo largo del cromosoma 17 (17q21), y fue descubierto e identificado en 1994. Este gen codifica la proteína BRCA1 supresora de tumores (1863 aminoácidos).

En la proteína BRCA1 encontramos tres clusters asociados al cáncer de mama (BCCR: “Breast Cancer Cluster” Region) y un único cluster asociado al cáncer de ovario (OCCR: “Ovarian Cancer Cluster” Region). Mutaciones en estas regiones aumentan la posibilidad del desarrollo de un cáncer en dichos tejidos específicos.

Figura 2: estructura de la proteína BRCA1 (dominios, clusters) y las proteínas con las que interacciona señaladas con un recuadro. Extraída de la referencia [1].

Esta proteína presenta en su extremo N-terminal un dominio RING rico en cisteína con el que interacciona con la proteína BARD1. Así forma un complejo BRCA1-BARD1 que tiene actividad ubiquitina ligasa. En caso de que haya una mutación en el dominio RING de la proteína BRCA1, esta no podrá unirse a BARD1 y por tanto, se perderá la función ubiquitina ligasa, pudiendo suponer una predisposición al desarrollo de cáncer. 

En su extremo C-terminal presenta el dominio BRCT, que interacciona con la RNA polimerasa II relacionada con el proceso de transcripción. Además, este dominio interactúa con tres proteínas: Abraxas, BACH1, CtIP; estas uniones permitirán la formación de tres complejos distintos implicados en la reparación de DSBs:

  • La proteína BRCA1 se asocia a las Abraxas a través de RAP80, y cuando hay un daño en el DNA este complejo interacciona con las histonas dañadas.
  • El complejo BRCA1-BACH1 participa en la recombinación homóloga. La proteína BACH1 también es conocida como BRIP1 y tiene función helicasa. 
  • La proteína CtIP unida a BRCA1 forma un complejo encargado de la resección de DSBs en pasos tempranos de la reparación.

Figura 3: esquema en el que se ilustran las interacciones de diferentes proteínas con BRCA1 y las funciones de los complejos mencionados. Created with BioRender.com.

BRCA2

El gen BRCA2 se encuentra en el cromosoma 13 (13q12), y fue descubierto e identificado en 1995. Este gen codifica la proteína BRCA2 supresora de tumores, menos conocida pero de mayor tamaño que la codificada por BRCA1 (3418 aminoácidos).

La proteína ácida pequeña DSS1 se une a una región de la proteína BRCA2, formando un complejo proteico que se asociará a las zonas dañadas de DNA.  

La proteína BRCA2 presenta unas repeticiones BRC que permitirán la unión directa a RAD51, una enzima de recombinación necesaria en el proceso. El complejo formado por las dos proteínas juega un papel importante en el reconocimiento de DSBs y el inicio de la recombinación. 

Los clusters ya mencionados localizados en la proteína BRCA1 también se encuentran en la proteína BRCA2.

Figura 4: esquema de la proteína BRCA2, se pueden observar los cluster (BCCR y OCCR). Extraído de referencia [2].

Además, se ha demostrado que el gen BRCA2 tiene un papel fundamental en la citocinesis, ya que mutaciones en este gen conllevan anomalías cromosómicas.

Figura 5: ilustra la unión de las proteínas RAD51 y DSS1 a la proteína BRCA2, así como las interacciones de sus estructuras moleculares (PDB: 1N0W y PDB: 1IYJ). Created with BioRender.com and Chimera.

CONEXIÓN ENTRE BRCA1 Y BRCA2: PALB2

Pero, ¿de qué manera se conectan las proteínas codificadas por BRCA1 y BRCA2? Esto es posible gracias a la proteína PALB2 (Partner And Localizer of BRCA2). La interacción entre las tres proteínas ocurre de la siguiente forma, tal y como se ilustra en el esquema:

  • El extremo N-terminal coiled-coil de PALB2 interacciona con el dominio coiled-coil de BRCA1.
  • El extremo N-terminal de BRCA2 se conecta con el extremo C-terminal de PALB2.

Esto daría lugar a la formación del complejo BRCA1-PALB2-BRCA2 el cual es esencial para la recombinación homóloga, así como la activación y mantenimiento del punto de control G2/M del ciclo celular.

PALB2 es susceptible a sufrir mutaciones que podrían conducir a la pérdida de estabilidad genómica y, en consecuencia, un posible desarrollo de cáncer.

Figura 6: se ilustran las regiones de la proteína PALB2 (Partner And Localizer of BRCA2) con las que interaccionan las proteínas BRCA1 y BRCA2, formando el complejo BRCA1-PALB2-BRCA2. Además, se puede observar la interacción ya mencionada de BRCA1 con la proteína BRIP1 (también conocida como BACH1). Esquema extraído de referencia [5].

RELACIÓN CON p53

Se cree que la proteína producto del gen BRCA1 lleva a cabo su función mediante la formación de grandes complejos. En estos complejos participan diversas proteínas, entre las cuales se encuentra la p53, que juega un papel crucial en el mantenimiento de la integridad genómica por su función supresora de tumores.

En muchos de los tipos de cáncer debidos a mutaciones de los genes BRCA, se ha visto que ha habido interrupciones en la relación entre algunos componentes de estos complejos, provocando que la función de los genes BRCA se vea alterada y por tanto se inhiba la supresión del tumor, dando como resultado la aparición de cáncer.

Figura 7: alteraciones en el complejo proteico en el que intervienen BRCA1/2 y p53 pueden conducir a la formación de un tumor, al inhibirse su supresión. Created with BioRender.com. 

Por ejemplo, el complejo BRCA1-BARD1 está implicado en la activación de ciertos puntos de control del ciclo celular. Estas tareas complementarias de BRCA1 en los puntos de control y su rol estabilizador de p53 podrían ayudar en su función de mantenimiento de la estabilidad genómica.  

Muchos estudios sugieren que en la formación del tumor existe una estrecha relación entre la pérdida de función de BRCA1/2 y la pérdida de función de la p53. 

Se cree que la rotura de la molécula de DNA (debida a esa falta de funcionalidad de BRCA) hace que se activen puntos de control dependientes de p53 y/o apoptosis para evitar la tumorigénesis.

MUTACIONES Y CÁNCER

Cuando consultamos la página web del BRCA Exchange, una iniciativa internacional de la Global Alliance for Genomics and Health, encontramos a mes de febrero de 2021 un total de 40389 variantes de estos genes, clasificadas según su significado en clínica en cuanto a su patogenicidad (una escala de patogénico a benigno o sin significado clínico).

Esta cifra nos ilustra uno de los desafíos y la complejidad que supone el estudio de BRCA1 y BRCA2: no todas las mutaciones implican cáncer. 

Las mutaciones en BRCA1/2 implicadas en tumorigénesis generalmente afectan a la mama y al ovario. Pero, ¿a qué se debe el tropismo por estos tejidos?

Ambos tienen gran susceptibilidad a sufrir estimulación hormonal por señales fuertes de crecimiento. La enzima aromatasa está implicada en la síntesis de estrógenos y está regulada negativamente por el gen BRCA1. Además, se ha observado un incremento de los niveles de estrógenos en sangre en personas portadoras de mutaciones en BRCA1, así como de progesterona. Por ello, actualmente se encuentra en estudio la correlación entre niveles hormonales y la predisposición a tumores cuando BRCA1 se encuentra mutado. 

Además, en menor medida estas mutaciones están relacionadas con el cáncer de páncreas, entre otros. 

CÁNCER DE MAMA

Tal y como nos sugiere su nombre, estos genes están asociados con el desarrollo de cáncer de mama, de manera que el riesgo de padecer este tipo de cáncer a lo largo de la vida cuando se produce una pérdida de funcionalidad de BRCA2 es del 45%, mientras que cuando se trata del gen BRCA1 alcanza el 57%.

Un aspecto a remarcar en el desarrollo del cáncer de mama es la importancia de la predisposición genética: cuando se estudian casos de esta enfermedad debidos a la herencia de una mutación, entre todos los genes de susceptibilidad al cáncer de mama descritos, la mayoría de estas mutaciones se han encontrado en BRCA1 y BRCA2.

A modo de curiosidad, en un estudio se ha observado que la expresión tanto de BRCA1 como de BRCA2 es menor en trabajadores a turnos (incluyen jornadas laborales nocturnas) que en trabajadores en turno de día y, además, cuanto mayor es el número de noches trabajadas por mes, menor es la expresión de los genes. Estos resultados llevaron a algunos autores a proponer que esta podría ser la causa de que la alteración del ritmo circadiano pueda conducir a un incremento del riesgo de desarrollo de cáncer de mama (tal y como han comprobado diferentes estudios), y a plantear que los genes BRCA podrían incluirse dentro de los conocidos como “clock-controlled genes”. 

CÁNCER DE OVARIO

El ovario, junto a la mama, es uno de los órganos más afectados por las mutaciones en los genes BRCA. Se piensa que esto puede deberse al estrés oxidativo derivado de los ciclos menstruales, así como al papel de la regulación hormonal (especialmente por estrógenos).

Por ello, la alta predisposición en estos tejidos a sufrir daños en su DNA implica la importancia de los mecanismos de reparación en los que intervienen los genes BRCA. Las mutaciones en el gen BRCA1 suponen un aumento del 11% en el riesgo de sufrir cáncer de ovario y un 40% en el caso de pérdida de funcionalidad del gen BRCA2. 

Figura 8: created with BioRender.com.

CÁNCER DE PÁNCREAS

Se trata del tercer tipo de cáncer más común asociado a la mutación de BRCA. 

Se caracteriza por tener una alta letalidad, debido potencialmente a que presenta una gran resistencia hacia los tratamientos. 

Sólo un pequeño porcentaje de pacientes con cáncer de páncreas presenta mutaciones germinales en BRCA1/2 (aproximadamente el 7%). Por tanto, el cáncer de páncreas causado por mutaciones en BRCA1/2 es poco común; y cabe destacar que presenta una “ventaja” ya que al poseer características biológicas únicas (diferentes a las del cáncer de páncreas común) se pueden crear tratamientos específicos.

Las mutaciones en BRCA1 o en BRCA2 aumentan de manera diferente el riesgo de padecer cáncer de páncreas: si es BRCA2 el afectado, el riesgo de padecer la enfermedad aumenta mucho más que si se trata de mutaciones de BRCA1.

TERAPIAS INNOVADORAS

INHIBIDORES DE PARP (PARPi)

Los inhibidores de PARP (PARPi) se han usado en tratamientos de cáncer  en pacientes sensibles a quimioterapia con platino.

PARP (Poli-ADP-ribosa polimerasa) es una enzima con papel fundamental en el reclutamiento del complejo proteico encargado de restaurar los daños del DNA. Las proteínas BRCA, entre otras, forman parte de estos complejos.

Como ya se ha tratado, una mutación en los genes BRCA resultaría en la transcripción de las proteínas BRCA1 y BRCA2 con una pérdida de funcionalidad y por consecuente, una errónea reparación. 

Figura 9: participación de PARP en la formación del complejo proteico. Created with BioRender.com.

Este tratamiento basado en el uso de inhibidores de PARP consiste en la “captura” (PARP-trapping) de esta enzima. Esto ocasiona la inhibición de los mecanismos de reparación, ya que en caso de que se produjese una mutación en BRCA1/2, la reparación errónea podría conducir a la formación de tumores. De esta forma, al no actuar los mecanismos de reparación, se activa la apoptosis celular y esas células morirían.

Figura 10: esquema ilustrativo de la función de PARPi. Created with BioRender.com.

TERAPIAS BASADAS EN G-CUADRUPLEXOS

Un enfoque terapéutico de gran interés actualmente para tumores en los que el gen BRCA2 se ve implicado se centra en los G-cuadruplexos, unas estructuras formadas por tres láminas de tétradas de guanina unidas por apareamientos de Hogsteen y estabilizadas por un catión metálico. Podemos encontrar estas estructuras al final de las secuencias teloméricas, interfiriendo con su replicación, y se ha observado que BRCA2, entre otras proteínas, interviene en la replicación de los telómeros (de forma que estos no se acortan). 

En trabajos experimentales se ha demostrado que tratamientos de células con pérdida de funcionalidad de BRCA2 con compuestos estabilizadores de G-cuadruplexos disminuye la viabilidad de las mismas, conduciendo de alguna manera a un aumento de la letalidad específica al incrementar la fragilidad de los telómeros. Concretamente, se utilizó la piridostatina (PDS). Otro aspecto que genera interés de este trabajo es que también afecta a aquellas células con pérdida de funcionalidad de BRCA2 que muestran resistencia a los tratamientos con inhibidores de PARP ya mencionados.

Figura 11: en este gráfico se representa un descenso de la viabilidad de las células deficientes en BRCA2 (línea roja) cuando son tratadas con piridostatina (PDS), un estabilizador de G-cuadruplexos. Extraído de los resultados de la referencia [13].

Además, otro compuesto estabilizador de G-cuadruplexos conocido como CX-5461 entró en 2016 en fase I de ensayo clínico para el tratamiento de tumores relacionados con el gen BRCA. 

Con BRCA1 y BRCA2 surgió una nueva manera de concebir el estudio del genoma y el cáncer: pocas décadas atrás existía cierto rechazo en el campo de la ciencia a vincular la aparición de tumores a cambios en el material genético; pero esto cambió con este descubrimiento que tuvo gran impacto en la investigación contra el cáncer.

REFERENCIAS

[1] Takaoka, M. and Miki, Y. (2018) ‘BRCA1 gene: function and deficiency’, International Journal of Clinical Oncology. Springer Japan, 23(1), pp. 36–44. doi: 10.1007/s10147-017-1182-2.

[2] Venkitaraman, A. R. (2019) ‘How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?’, DNA Repair. Elsevier, 81(July), p. 102668. doi: 10.1016/j.dnarep.2019.102668.

[3] Semmler, L., Reiter-Brennan, C. and Klein, A. (2019) ‘BRCA1 and breast cancer: A review of the underlying mechanisms resulting in the tissue-specific tumorigenesis in mutation carriers’, Journal of Breast Cancer, 22(1), pp. 1–14. doi: 10.4048/jbc.2019.22.e6.

[4] Bracci, M., Ciarapica, V., Zabaleta, M. E., Tartaglione, M. F., Pirozzi, S., Giuliani, L., Piva, F., Valentino, M., Ledda, C., Rapisarda, V., Stevens, R. G. and Santarelli, L. (2019) ‘BRCA1 and BRCA2 gene expression: diurnal variability and influence of shift work’, Cancers, 11(8), pp. 1–15. doi: 10.3390/cancers11081146.

[5] Murphy, C. G. and Moynahan, M. E. (2010) ‘BRCA Gene Structure and Function in Tumor Suppression’, The Cancer Journal, 16(1), pp. 39–47. doi: 10.1097/ppo.0b013e3181cf0204.

[6] López-Urrutia, E., Salazar-Rojas, V., Brito-Elías, L., Coca-González, M., Silva-García, J., Sánchez-Marín, D., Campos-Parra, A. D. and Pérez-Plasencia, C. (2019) ‘BRCA mutations: is everything said?’, Breast Cancer Research and Treatment. Springer US, 173(1), pp. 49–54. doi: 10.1007/s10549-018-4986-5.

[7] Roy, R., Chun, J. and Powell, S. N. (2012) ‘BRCA1 and BRCA2: Different roles in a common pathway of genome protection’, Nature Reviews Cancer. Nature Publishing Group, 12(1), pp. 68–78. doi: 10.1038/nrc3181.

[8] Luo, G., Lu, Y., Jin, K., Cheng, H., Guo, M., Liu, Z., Long, J., Liu, C., Ni, Q. and Yu, X. (2015) ‘Pancreatic cancer: BRCA mutation and personalized treatment’, Expert Review of Anticancer Therapy, 15(10), pp. 1223–1231. doi: 10.1586/14737140.2015.1086271.

[9] E. Filippini, S. and Vega, A. (2013) ‘Breast cancer genes: beyond BRCA1 and BRCA2’, Frontiers in Bioscience, 18, pp. 1358–1372.

[10] Venkitaraman, A. R. (2014) ‘Cancer suppression by the chromosome custodians, BRCA1 and BRCA2’, Science, 343(6178), pp. 1470–1475. doi: 10.1126/science.1252230.

[11] Simhadri, S., Vincelli, G., Huo, Y., Misenko, S., Foo, T. K., Ahlskog, J., Sorensen, C., Oakley, G., Ganesan, S., Bunting, S., Xia, B. (2018) ‘PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response’. Oncogene. doi:10.1038/s41388-018-0535-2. 

[12] Xu, H., Di Antonio, M., McKinney, S., Mathew, V., Ho, B., O’Neil, N. J., Santos, N. Dos, Silvester, J., Wei, V., Garcia, J., Kabeer, F., Lai, D., Soriano, P., Banáth, J., Chiu, D. S., Yap, D., Le, D. D., Ye, F. B., Zhang, A., Thu, K., Soong, J., Lin, S. C., Tsai, A. H. C., Osako, T., Algara, T., Saunders, D. N., Wong, J., Xian, J., Bally, M. B., Brenton, J. D., Brown, G. W., Shah, S. P., Cescon, D., Mak, T. W., Caldas, C., Stirling, P. C., Hieter, P., Balasubramanian, S. and Aparicio, S. (2017) ‘CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours’, Nature Communications, 8(205). doi: 10.1038/ncomms14432.

[13] Zimmer, J., Tacconi, E. M. C., Folio, C., Badie, S., Porru, M., Klare, K., Tumiati, M., Markkanen, E., Halder, S., Ryan, A., Jackson, S. P., Ramadan, K., Kuznetsov, S. G., Biroccio, A., Sale, J. E. and Tarsounas, M. (2016) ‘Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds’, Molecular Cell. The Authors, 61(3), pp. 449–460. doi: 10.1016/j.molcel.2015.12.004.

[14] Rudkin, T. M. and Foulkes, W. D. (2005) ‘BRCA2: Breaks, mistakes and failed separations’, Trends in Molecular Medicine, 11(4), pp. 145–148. doi: 10.1016/j.molmed.2005.02.003.

[15] Mittica, G., Ghisoni, E., Giannone, G., Genta, S., Aglietta, M. and Valabrega,G. (2018) ‘PARP Inhibitors in Ovarian Cancer’, Recent Patents on Anti-Cancer Drug Discovery, 13(4), pp. 392–410. doi: 10.2174/1574892813666180305165256.

[16] Neff, R. T., Senter, L., Salani, R. (2018) ‘BRCA mutation in ovarian cancer: testing, implications and treatment considerations’, Therapeutic Advances in Vaccines, 9(6), pp. 259–261. doi: 10.1177/https.

[17] Venkitaraman, A. R. (2002) ‘Cancer susceptibility and the functions of BRCA1 and BRCA2’, Cell, 108(2), pp. 171–182. doi: 10.1016/S0092-8674(02)00615-3.