Vivir así es morir de amor: Síndrome de Takotsubo

Realizado por Sofía Alván Benito

«Morir de amor»… Esa frase que hemos escuchado y leído miles de veces en poesías, libros o en la letra de famosas canciones como la de Camilo Sesto. Suena dramático e irreal, pero a veces la realidad supera a la ficción.

Introducción

El síndrome de Takotsubo (ST) es una patología que afecta al corazón. Suele aparecer en pacientes que han estado sometidos a un gran estrés físico o emocional (Lyon et al., 2016). Estos detonantes pueden ser, por ejemplo, la pérdida de un ser querido, un gran cambio inesperado en nuestra vida o incluso una ruptura con nuestra pareja.

Fue diagnosticado por primera vez por un médico japonés, que bautizó a esta enfermedad con el nombre que tiene actualmente. La palabra «Takotsubo», en japonés, es el nombre de una vasija que se utiliza para cazar pulpos y que, curiosamente, tiene una forma muy similar a la que adquiere el corazón al sufrir esta enfermedad (Sato et al., 1990). (Figura 1)

Figura 1: Comparación entre una vasija japonesa Takotsubo y un corazón de un paciente con ST.
(Foto adaptada de la original tomada por: Profesor Christian Templin, Hospital Universitario de Zurich)

Síndrome de Takotsubo vs Infarto de Miocardio

Este síndrome, también llamado síndrome del corazón roto, se asemeja bastante a un infarto de miocardio (IM). Sin embargo, ambas patologías tienen grandes diferencias. (Tabla 1) (Falola, Fonbah, & McGwin, 2013; Gupta & Gupta, 2018)

Síndrome de Takotsubo Infarto de Miocardio
Antecedentes cardiovasculares No
Obstrucción arterial No
Factores de riesgo Estrés emocional o físico Tabaco, obesidad, hipertensión, diabetes
Partes afectadas Ventrículo izquierdo Corazón (general)
Tabla 1: Diferencias entre el ST y el IM.
(De elaboración propia)

Epidemiología

Realmente, el Síndrome de Takotsubo es una enfermedad rara. Afecta únicamente, más o menos, a un 2% de todos los pacientes que fueron inicialmente diagnosticados con Síndrome Agudo del Miocardio. (Deshmukh et al., 2012)

Suele aparecer con mayor frecuencia en mujeres mayores de 50 años. La mayoría de casos se producen por un estímulo, que lleva a la aparición de la enfermedad. (Lyon et al., 2016). Sin embargo, en un 30% de los casos no hay detonante físico ni emocional. (Khera, Light-Mcgroary, Zahr, Horwitz, & Girotra, 2016). Dentro de los casos que sí se deben a un evento desencadenante, un 90% corresponden a eventos negativos, son los casos del síndrome del corazón roto propiamente dicho. (Templin et al., 2015). El 10% restante se debe a eventos positivos, como por ejemplo ganar la lotería, y constituyen una variante de esta patología que recibe el nombre de síndrome del corazón feliz. (Ghadri et al., 2016)

La tasa de mortalidad es muy baja, de un 4.5%. (Singh et al., 2014). En general, esta patología tiene un buen pronóstico y la mayoría de pacientes se recuperan en unos meses. (Elesber et al., 2007). Suele ser una enfermedad transitoria, aunque en ocasiones puede llegar a ser recurrente.

En hombres, aunque la enfermedad es menos frecuente, la mortalidad es superior a la de las mujeres. (Khera, Light-Mcgroary, Zahr, Horwitz, & Girotra, 2016)

Síntomas y manifestaciones clínicas

Como ya ha sido mencionado anteriormente, los síntomas de un paciente con Síndrome de Takotsubo son muy parecidos a los de un paciente que sufre un infarto de miocardio.

Los principales síntomas son dolor de pecho, disnea o dificultad para respirar, palpitaciones, insuficiencia cardíaca, paro cardíaco… (Templin et al., 2015)

Los pacientes con este síndrome no presentan ningún otro problema cardiovascular, ni obstrucción en las arterias. A pesar de ello, se ve una pérdida de la función del ventrículo izquierdo del corazón, que es la parte más afectada. (Figura 2)

Figura 2: Partes del corazón y vasos sanguíneos principales.
AD: Aurícula Derecha; AI: Aurícula Izquierda; VD: Ventrículo Derecho; VI: Ventrículo Izquierdo; vc: vena cava; aa: arteria aorta; ap: arteria pulmonar; vp: vena pulmonar
(De elaboración propia)

En condiciones normales, el corazón utiliza como fuente principal de energía la que procede del metabolismo de ácidos grasos en vez de la glucosa. Cuando se sufre este síndrome, el corazón cambia su metabolismo a uno en el que utiliza más glucosa y menos ácidos grasos. (Gupta & Gupta, 2018)

Además, se puede ver elevación de biomarcadores cardíacos como la troponina o el péptido natriurético. Esto puede servir para el diagnóstico de la enfermedad. (Budnik et al., 2016)

Puede haber alteraciones del electrocardiograma, en algunos casos. (Migliore, Zorzi, Perazzolo Marra, Iliceto, & Corrado, 2015)

Este síndrome también recibe el nombre de síndrome de balonamiento apical transitorio, ya que se puede observar una especie de abultamiento en forma de «balón» en la región apical. (Lyon et al., 2016)

Causas

Una de las posibles explicaciones a esta patología es que se produzca debido al exceso de estimulación del eje hipotálamo-hipófisis-adrenal. (Figura 3). En situaciones de estrés, se activa esta vía, para producir hormonas como los glucocorticoides (cortisol) y las catecolaminas (epinefrina y norepinefrina). (Figura 4)

Figura 3: Eje hipotálamo-hipófisis-adrenal y su papel en el corazón.
CRH: Hormona Liberadora de Corticotropina ; ACTH: Hormona Adenocorticotropa o Corticotropina
(De elaboración propia)
Figura 4: Estructura química del cortisol, norepinefrina y epinefrina (de izquierda a derecha)

Cuando se produce esta patología, los niveles plasmáticos de epinefrina y norepinefrina son altos, lo que indica que pueden estar ejerciendo un efecto desmesurado sobre el corazón, lo que derivaría en este síndrome. (Wittstein et al., 2005)

La adrenalina y la noradrenalina actúan sobre receptores adrenérgicos para ejercer su función. En el corazón, el ventrículo izquierdo es el lugar en el que se encuentran el mayor número de receptores adrenérgicos. Esto explica que el ventrículo izquierdo del corazón sea la zona que se ve más afectada en el Síndrome de Takotsubo. (Gupta & Gupta, 2018)

Se producen cambios en el metabolismo celular, que llevan a una disminución de la contractibilidad del corazón, principalmente en el ventrículo izquierdo. (Gupta & Gupta, 2018)

Como curiosidad, algunas publicaciones científicas apuntan a una posible relación entre esta patología cardíaca y el cáncer. Se dice que es posible que las catecolaminas que se liberan en esta enfermedad actúen sobre células tumorales, induciendo su crecimiento. (Sattler et al., 2017)

Además, se ha postulado que el hecho de que afecte más frecuentemente a mujeres puede deberse a la influencia de ciertas hormonas sexuales. (Alkhoury et al., 2016)

Otros posibles factores que podría jugar algún papel en el desarrollo de esta enfermedad son los aspectos genéticos. (Ikutomi et al., 2014)

Tratamiento

No hay un solo tratamiento claro para esta condición.

Dependiendo de las circunstancias personales de cada paciente o de otras enfermedades coexistentes, el tratamiento podría incluir beta-bloqueadores (para frenar el efecto de las catecolaminas sobre sus receptores), ventilación mecánica, levosimendan (para la insuficiencia cardíaca)… (Santoro et al., 2013; Templin et al., 2015)

Conclusión

El Síndrome de Takotsubo es un gran ejemplo de que existe una conexión entre el cerebro y diferentes órganos de nuestro cuerpo, en este caso, entre el cerebro y el corazón. No solo influyen las cuestiones físicas sobre la salud del cuerpo, sino que las cuestiones emocionales a veces pueden ser tan influyentes que no solo afectan a nuestro estado de ánimo, también pueden llegar a afectar al funcionamiento de órganos tan importantes como lo es el corazón.

En definitiva, si solías ser de los que dicen «de amor nadie se muere», apuesto a que ahora habrás cambiado de opinión y tendrás que decir «de amor sí se puede morir».

Referencias

Alkhoury, J., Lundgren, J., Ali, A., Mesinovic, D., Redfors, B., & Omerovic, E. (2016). Updates on publication trends in takotsubo syndrome doi:10.1016/j.ijcard.2016.07.059

Budnik, M., Kochanowski, J., Piatkowski, R., Wojtera, K., Peller, M., Gaska, M., . . . Opolski, G. (2016). Simple markers can distinguish takotsubo cardiomyopathy from ST segment elevation myocardial infarction. International Journal of Cardiology, 219 doi:10.1016/j.ijcard.2016.06.015

Deshmukh, A., Kumar, G., Pant, S., Rihal, C., Murugiah, K., & Mehta, J. L. (2012). Prevalence of takotsubo cardiomyopathy in the united states. American Heart Journal, 164(1) doi:10.1016/j.ahj.2012.03.020

Elesber, A. A., Prasad, A., Lennon, R. J., Wright, R. S., Lerman, A., & Rihal, C. S. (2007). Four-year recurrence rate and prognosis of the apical ballooning syndrome. Journal of the American College of Cardiology, 50(5) doi:10.1016/j.jacc.2007.03.050

Falola, M., Fonbah, W., & McGwin, G. (2013). Takotsubo cardiomyopathy versus ST-elevation myocardial infarction in a large case-control study: Proposing a new mechanism. International Journal of Cardiology, 167(3) doi:10.1016/j.ijcard.2012.10.059

Ghadri, J. R., Sarcon, A., Diekmann, J., Bataiosu, D. R., Cammann, V. L., Jurisic, S., . . . Prasad, A. (2016). Happy heart syndrome: Role of positive emotional stress in takotsubo syndrome. European Heart Journal, 37(37) doi:10.1093/eurheartj/ehv757

Gupta, S., & Gupta, M. M. (2018). Takotsubo syndrome doi:10.1016/j.ihj.2017.09.005

Ikutomi, M., Yamasaki, M., Matsusita, M., Watari, Y., Arashi, H., Endo, G., . . . Ohnishi, S. (2014). Takotsubo cardiomyopathy in siblings. Heart and Vessels, 29(1) doi:10.1007/s00380-013-0345-y

Khera, R., Light-Mcgroary, K., Zahr, F., Horwitz, P. A., & Girotra, S. (2016). Trends in hospitalization for takotsubo cardiomyopathy in the united states. American Heart Journal, 172 doi:10.1016/j.ahj.2015.10.022

Lyon, A. R., Bossone, E., Schneider, B., Sechtem, U., Citro, R., Underwood, S. R., . . . Omerovic, E. (2016). Current state of knowledge on takotsubo syndrome: A position statement from the taskforce on takotsubo syndrome of the heart failure association of the european society of cardiology doi:10.1002/ejhf.424

Migliore, F., Zorzi, A., Perazzolo Marra, M., Iliceto, S., & Corrado, D. (2015). Myocardial edema as a substrate of electrocardiographic abnormalities and life-threatening arrhythmias in reversible ventricular dysfunction of takotsubo cardiomyopathy: Imaging evidence, presumed mechanisms, and implications for therapy. Heart Rhythm, 12(8) doi:10.1016/j.hrthm.2015.04.041

Santoro, F., Ieva, R., Ferraretti, A., Ienco, V., Carpagnano, G., Lodispoto, M., . . . Brunetti, N. D. (2013). Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: A case series. Cardiovascular Therapeutics, 31(6) doi:10.1111/1755-5922.12047

Sato, H., Tateishi, H., Uchida, T., Dote, K., Ishihara, M., Kodama, K., … & Hori, M. (1990). Clinical aspect of myocardial injury: from ischemia to heart failure. Kagaku Hyoronsha2, 55-64.

Sattler, K., El-Battrawy, I., Lang, S., Zhou, X., Schramm, K., Tülümen, E., . . . Akin, I. (2017). Prevalence of cancer in takotsubo cardiomyopathy: Short and long-term outcome. International Journal of Cardiology, 238 doi:10.1016/j.ijcard.2017.02.093

Singh, K., Carson, K., Shah, R., Sawhney, G., Singh, B., Parsaik, A., . . . Horowitz, J. (2014). Meta-analysis of clinical correlates of acute mortality in takotsubo cardiomyopathy doi:10.1016/j.amjcard.2014.01.419

Templin, C., Ghadri, J. R., Diekmann, J., Napp, L. C., Bataiosu, D. R., Jaguszewski, M., . . . Lüscher, T. F. (2015). Clinical features and outcomes of takotsubo (stress) cardiomyopathy. New England Journal of Medicine, 373(10) doi:10.1056/nejmoa1406761

Wittstein, I. S., Thiemann, D. R., Lima, J. A. C., Baughman, K. L., Schulman, S. P., Gerstenblith, G., . . . Champion, H. C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. New England Journal of Medicine, 352(6) doi:10.1056/nejmoa043046




Anticuerpos monoclonales como terapia para el Alzheimer

Sofía Pérez Rubio y Celia Navas González

Generalidades de los anticuerpos monoclonales

Los anticuerpos (Ac) son moléculas lipoproteicas que forman parte del sistema inmunitario humoral, y los cuales reconocen de manera específica antígenos (Ag). Dicha unión Ac-Ag es reversible y su fuerza es lo que conocemos como afinidad. En el caso concreto de los anticuerpos monoclonales, estos son producidos por un solo clon activado de células B, por lo cual son activos frente a un determinante antigénico único (1,2).

A nivel general, los anticuerpos poseen una forma espacial de Y, y constan de dos cadenas ligeras y dos pesadas, unidas por puentes disulfuro (Figura 1). A su vez, cada una de las cadenas consta de una región constante (CL y CH respectivamente) que se mantiene, y una región variable (VL y VH) en los extremos, que es la que genera especificidad. También es de importancia su extremo carboxiterminal, del cual dependerá la respuesta efectora que ocasiona el Ac al determinar las distintas uniones a receptores de membrana, y los extremos aminoterminales, los cuales reconocen y se unen a los antígenos (1).

Figura 1. Esquema de la estructura de una molécula de inmunoglobulina. Las cadenas pesadas aparecen en negro y las ligeras en gris claro.
CH: dominios de la región constante de la cadena pesada; CL: dominio constante de la cadena ligera; COOH: extremo carboxiterminal; Fab y Fc: fragmentos resultantes de proteólisis; NH: extremo aminoterminal; VH: dominio variable de la cadena pesada; VL: dominio variable de la cadena ligera; – – -: puentes disulfuro. Extraído de (1)

Los anticuerpos monoclonales en los que nos basaremos fueron descubiertos por los científicos Milstein y Köhler en la década de los 70, por lo cual serían galardonados con un premio Nobel posteriormente (1). Como decimos, estos anticuerpos son los que provienen de una misma célula B y poseen la misma especificidad, por lo que para conseguirlos fusionaron células de mieloma de ratón con células de bazo inmunizado con el Ag de interés. Lo que se consigue de esta manera es un hibridoma, el cual es altamente ventajoso, ya que los linfocitos B producen anticuerpos deseados y aportan la memoria inmune, mientras que las células neoplásicas aportan una capacidad de multiplicación indefinida (Figura 2). En resumen, se consigue una fuente ilimitada de anticuerpos monoclonales específicos que derivan de un único linfocito B (1,2,3).

Figura 2. Esquema de la obtención de un hibridoma. Extraído de Michnick W, Sidhu S. Submitting antibodies to binding arbitration. Nature Chemical Biology 2008; 4: 326-9

Estos anticuerpos monoclonales obtenidos fueron usados como tratamiento, pero se observó que el hecho de que fueran de origen murino provocaba un problema de tolerancia. Para solventarlo, se emplean Ac quiméricos en los que solo las regiones variables son de origen murino, o humanizados en los que solo lo son las regiones hipervariables. También existe la alternativa de anticuerpos monoclonales humanos que se producen en animales transgénicos (1,2).

Enfermedad del Alzheimer

Por otra parte, la enfermedad de Alzheimer o EA se caracteriza por la presencia de marañas neurofibrilares, placas seniles y pérdida de neuronas y sinapsis, dando lugar todo ello a una disminución de las habilidades mentales y cognitivas. No obstante, los dos rasgos más característicos de dicha enfermedad son las marañas neurofibrilares de la proteína Tau hiperfosforilada en forma de ovillos neurofibrilares, así como los depósitos del péptido β-amiloide (Aβ) de manera más característica (4,5).

El péptido Aβ, tanto de forma fisiológica como patológica, surge de la degradación proteolítica de la proteína precursora del amiloide (APP) de la membrana plasmática, la cual es cortada por las enzimas β- y γ-secretasas mediante la vía amiloidogénica (Figura 3). Por este motivo, dichas endoproteasas son consideradas posibles blancos terapéuticos de importancia. De forma paralela, en estudios más recientes también se presta atención a la degradación del péptido Aβ además de su formación, en la cual participan neprilisina (NEP) y la enzima insulina degradante (IDE) (4).

Figura 3. Esquema del corte proteolítico de APP por las endoproteasas. Extraído de (4)

Como se ha descrito, la agregación del péptido es una de las características de EA más importantes, pero la mera presencia del mismo no es la causante de la neurodegeneración ya que se le adjudica un papel fisiológico. Para ser dañino, el péptido Aβ, que de forma normal existe como una estructura α-hélice o “random coil”, debe sufrir un plegamiento incorrecto en estructuras β plegadas que genere la formación de agregados (4).

Sumado a su plegamiento incorrecto, es clave el ensamblaje del péptido para su efecto biológico, siendo el extremo C-terminal el fragmento de mayor importancia para la formación de oligómeros (4). El depósito del péptido β42 produce el entramado de las sustancias conocidas como placas seniles (5), y esto es fundamental para el desarrollo de la enfermedad, ya que estos agregados son los que se depositan posteriormente en el cerebro y causan neurotoxicidad.

Tratamientos inmunoterápicos

A pesar de los grandes avances científicos, los tratamientos disponibles actualmente para la EA son solo sintomáticos, es decir, pueden lograr una mejoría en la calidad de vida, pero no consiguen revertir, frenar o curar la progresión de la enfermedad. Las estrategias farmacológicas están sobre todo enfocadas a inhibir la agregación del péptido Aβ amiloide. (6)

Una de las líneas de investigación más prometedoras contra la EA es la inmunoterapia anti-beta amiloide (Aβ), ya que ha demostrado provocar una respuesta inmune frente a los depósitos de péptidos patógenos y reducirlos (7). En este caso nos centraremos en una inmunoterapia pasiva mediante anticuerpos monoclonales, ya que se ha determinado que los efectos positivos de la inmunización parecen estar mediados por Ac (8). Esta inmunoterapia consiste en la administración por vía intravenosa de anticuerpos anti-βA en el paciente. De este modo, se consigue una respuesta inmunitaria anti-βA sin necesidad de una reacción proinflamatoria mediada por células T. (9). Los estudios en animales transgénicos han demostrado que la inmunización pasiva, además de reducir la carga amiloidogénica neuronal, mejora los déficits cognitivos, incluso antes de eliminar las placas amiloides neuronales. (9)

La inmunización pasiva con anticuerpos monoclonales humanizados comenzó cuando en 1996 Solomon y colaboradores demostraron que el uso de estos anticuerpos monoclonales dirigidos contra el péptido Aβ42 amiloide inhibían su agregación “in vivo” y podían solubilizar algunos precipitados fibrilares. Estos hallazgos pueden ser explicados mediante la activación de la microglía por el complejo Ag-Ac, la movilización de los depósitos de Aβ42 hacia la circulación sistémica o la disolución pasiva del complejo Ag-Ac. (6)

Figura 4. Mecanismo resumido de inmunoterapia en EA. (3)

Debido a la localización de EA como enfermedad cerebral, es de importancia para su tratamiento la barrera hematoencefálica (BHE) que aísla el Sistema Nervioso Central. Varias investigaciones demuestran que el Aβ soluble se desplaza a través de la BHE en un equilibrio dinámico bidireccional (4,5,7). Por otra parte, existen diferentes conclusiones en cuanto a los anticuerpos monoclonales anti-Aβ: ciertos artículos defienden que estos provocan un incremento en los niveles plasmáticos de Aβ a pesar de que no se unieran a los acúmulos cerebrales, mientras que otros demostraron que sí atravesaban la BHE uniéndose a las placas amiloides, siendo la única diferencia el método de administración (intravenosa o intraperitoneal) (5,7).

En estas técnicas de inmunización pasiva caben destacar dos aproximaciones distintas en cuanto al mecanismo de acción: aclaramiento periférico (plasmático) y central (tisular) del Aβ. Dicha inmunoterapia requiere la administración repetida de Ac anti-Aβ humanizados. Estos pueden estar dirigidos a la región N-terminal del péptido actuando por la vía de aclaramiento central, o bien a la región central en cuyo caso no se detectan en el cerebro, es decir, actúan mediante aclaramiento periférico (7).

Fármacos

En la actualidad existen cuatro fármacos en el mercado que han sido aprobados por la FDA (Food and Drug Association) para el tratamiento de la EA. Sus mecanismos de acción están basados en modular los circuitos corticales involucrados en procesos cognitivos, así como otros de respuesta celular que se activan ante estímulos de toxicidad cerebral por aumento de la excitabilidad neuronal. Estos tratamientos se clasifican en dos grupos: inhibidores de la acetilcolinesterasa (AChEI), cuyo mecanismo de acción consiste en aumentar la transmisión colinérgica mediante la inhibición de la acetilcolinesterasa en la hendidura sináptica, y antagonistas de los receptores de ácido N-metil-D-aspártico (NMDAR), que reducen la excitotoxicidad por el bloqueo de este receptor inotrópico. Se ha demostrado que estos fármacos tienen un simple efecto paliativo y que su eficacia disminuye con el tiempo (5,6,9).

Bapineuzumab y Solanezumab son los dos anticuerpos monoclonales que actualmente han llegado a las fases más avanzadas del desarrollo experimental (pero fracasaron en los ensayos en fase III en pacientes con EA leve-moderada, pues su objetivo era conseguir la inmunización de los pacientes que sufrían ese grado de EA sin producir meningoencefalitis) (5,6,9). Ambos son anticuerpos monoclonales humanizados contra la proteína A pero actuando en diferentes regiones de la misma. Es de destacar que Bapineuzumab, a pesar de haber reducido la concentración de biomarcadores clave como la placa amiloide y proteína Tau fosforilada medida en líquido cefalorraquídeo, falló en producir mejoras cognitivas significativas (6,9,10,11). Cabe agregar que no fue posible mantener dosis máximas de Bapineuzumab debido a la aparición de efusión y edema cerebral, siendo los principales efectos adversos de esta terapia. El uso de Solanezumab no logró reducir la carga de amiloide en cerebro, y por ende tampoco se asoció a efusión ni edema relacionado con amiloide. Sin embargo, a pesar de que como se ha dicho anteriormente fracasó en los ensayos en fase III con pacientes con enfermedad leve-moderada, posteriormente se observó que en los estadios iniciales de la enfermedad había un deterioro cognitivo menor, habiendo también una mejora de las capacidades funcionales (5,10,11). Se ha observado que otro fármaco, el Crenezumab, produce efectos muy similares al Solanezumab en fase II de estudio (10,11).

Otro fármaco que se ha desarrollado, el Aducanumab, se ha evaluado en estudios fase I y fase II y ha demostrado una disminución de la concentración de proteína anormal Αβ en cerebro, es decir, actúa a nivel de β-amiloide, reduciendo su acúmulo en las placas seniles interneurales en personas en estadio inicial de la enfermedad (5). En el caso de este fármaco, se ha observado, además de la reducción de la carga amiloide cerebral, una mejora en las funciones cognitivas, lo cual no ocurría en los dos fármacos anteriores (6).

Otro anticuerpo monoclonal totalmente humano diseñado para unirse con una elevada afinidad a un epítopo conformacional en las fibra de βA, el Gantenerumab, se está ensayando con el objetivo de evaluar su potencial modificador en personas con riesgo de desarrollar la EA presenil, por un mutación genética de carácter autosómico dominante. El fundamento terapéutico es que actúa degradando las placas amiloides mediante un proceso de reclutamiento de la microglía y activación de la fagocitosis. Los estudios experimentales con ratones transgénicos apoyan esta hipótesis (5,9).

Hay otro fármaco llamado Azeliragon, cuya acción está orientada a la desagregación de las placas β-amiloide. Se está ensayando en pacientes con estadios avanzados de la enfermedad (5).

Cabe destacar que todos los fármacos son anticuerpos monoclonales de origen humanizado, excepto el Gantenerumab y el Aducanumab, que son de origen humano (11).

Conclusiones

Finalmente, se puede concluir que la inmunoterapia a base de anticuerpos monoclonales es un tratamiento esperanzador en la enfermedad de Alzheimer, y que podría contribuir a sanar a personas de esta demencia para la cual hasta ahora sólo existían cuidados paliativos.

Referencias

(1) Merino, A. G. (2011). Anticuerpos monoclonales. Aspectos básicos. Neurología, 26(5), 301-306.

(2) Machado, N. P., Tèllez, G. A., & Castaño, J. C. (2006). Anticuerpos monoclonales: desarrollo físico y perspectivas terapéuticas. Infectio, 10(3), 186-197.

(3) Castillo, L. V. (2015). Producción de anticuerpos monoclonales. Univ Alcalá, 1-12.

(4) Rodríguez, A. E. E., & Signoret, V. C. Z. (2017). Papel de la agregación del péptido Beta amiloide en la enfermedad de Alzheimer. Revista de Educación Bioquímica, 36(1), 2-11.

(5) Costa Vera, E. (2017). Avances en el tratamiento del Alzheimer.

(6) Acosta, G. T., Delgado, K. R., & Nassar, J. S. (2021). Enfermedad de Alzheimer e Inmunoterapia: revisión de tres anticuerpos monoclonales humanizados dirigidos contra el Aβ amiloide (bapineuzumab, solanezumab y aducanumab). Revista Médica de Costa Rica y Centroamérica, 85(627), 2-7.

(7) González, M. M., Piñera, P. P., Calatayud, M. T., & Ménez, B. B. (2005). Inmunoterapia para la enfermedad de Alzheimer. Archivos de Medicina, 1(4).

(8)  Janus, C., Pearson, J., McLaurin, J. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982 (2000).

(9) J. Folch, M. Ettcheto, D. Petrov, S. Abad, I. Pedrós, M. Marin, J. Olloquequi, A. Camins, Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: estrategia frente a la proteína β-amiloide, Neurología, Volume 33, Issue 1,2018, Pages 47-58.

(10) Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO molecular medicine, 8(6), 595–608. 

(11) van Dyck C. H. (2018). Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biological psychiatry, 83(4), 311–319.